Learning based motion artifacts processing in fNIRS: a mini review.

brain-computer interfaces deep learning evaluation matrix fNIRS machine learning motion artifacts

Journal

Frontiers in neuroscience
ISSN: 1662-4548
Titre abrégé: Front Neurosci
Pays: Switzerland
ID NLM: 101478481

Informations de publication

Date de publication:
2023
Historique:
received: 20 08 2023
accepted: 11 10 2023
medline: 30 11 2023
pubmed: 30 11 2023
entrez: 30 11 2023
Statut: epublish

Résumé

This paper provides a concise review of learning-based motion artifacts (MA) processing methods in functional near-infrared spectroscopy (fNIRS), highlighting the challenges of maintaining optimal contact during subject movement, which can lead to MA and compromise data integrity. Traditional strategies often result in reduced reliability of the hemodynamic response and statistical power. Recognizing the limited number of studies focusing on learning-based MA removal, we examine 315 studies, identifying seven pertinent to our focus area. We discuss the current landscape of learning-based MA correction methods and highlight research gaps. Noting the absence of standard evaluation metrics for quality assessment of MA correction, we suggest a novel framework, integrating signal and model quality considerations and employing metrics like ΔSignal-to-Noise Ratio (ΔSNR), confusion matrix, and Mean Squared Error. This work aims to facilitate the application of learning-based methodologies to fNIRS and improve the accuracy and reliability of neurovascular studies.

Identifiants

pubmed: 38033535
doi: 10.3389/fnins.2023.1280590
pmc: PMC10683641
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

1280590

Informations de copyright

Copyright © 2023 Zhao, Luo, Chen, Loureiro, Yang and Zhao.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Biosensors (Basel). 2021 Oct 13;11(10):
pubmed: 34677345
Front Hum Neurosci. 2015 Jan 28;9:3
pubmed: 25674060
Neurophotonics. 2022 Oct;9(4):041406
pubmed: 35475257
J Neural Eng. 2022 Feb 03;19(1):
pubmed: 35038682
IEEE Trans Biomed Eng. 2019 Aug;66(8):2152-2162
pubmed: 30507523
Curr Opin Biomed Eng. 2021 Jun;18:
pubmed: 33709044
IEEE Trans Neural Syst Rehabil Eng. 2020 Apr;28(4):961-969
pubmed: 32054581
Neurosci Biobehav Rev. 2010 Mar;34(3):269-84
pubmed: 19632270
Sensors (Basel). 2018 Sep 05;18(9):
pubmed: 30189651
Front Neurosci. 2012 Oct 11;6:147
pubmed: 23087603
PLoS One. 2020 Dec 23;15(12):e0244186
pubmed: 33362260
Neuroimage. 2014 Jan 15;85 Pt 1:192-201
pubmed: 23796546
J Neural Eng. 2019 Aug 14;16(5):051001
pubmed: 31151119
J Biomed Opt. 2007 Nov-Dec;12(6):062111
pubmed: 18163814
Neurosci Biobehav Rev. 2017 Dec;83:160-172
pubmed: 29017917
Front Neuroinform. 2018 Apr 26;12:23
pubmed: 29755334
Appl Opt. 2009 Apr 1;48(10):D280-98
pubmed: 19340120
Neuroimage. 2011 Feb 14;54(4):2922-36
pubmed: 21029781
Neuroimage. 2019 Oct 15;200:511-527
pubmed: 31247300
Surg Endosc. 2019 Aug;33(8):2485-2494
pubmed: 30334166
Sensors (Basel). 2022 Apr 21;22(9):
pubmed: 35590859
Neurophotonics. 2018 Jan;5(1):015003
pubmed: 29430471
Front Neurosci. 2022 Oct 03;16:878750
pubmed: 36263362
Front Hum Neurosci. 2019 May 14;13:145
pubmed: 31139065
Sci Rep. 2015 Mar 30;5:9469
pubmed: 25820289
Jpn Psychol Res. 2018 Oct;60(4):347-373
pubmed: 30643322
Front Hum Neurosci. 2014 Feb 20;8:76
pubmed: 24600374
Neurophotonics. 2020 Jan;7(1):015001
pubmed: 31956662
J Digit Imaging. 2020 Oct;33(5):1167-1184
pubmed: 32989620
Sci Adv. 2018 Oct 03;4(10):eaat3807
pubmed: 30306130

Auteurs

Yunyi Zhao (Y)

HUB of Intelligent Neuro-Engineering, CREATe, IOMS, Division of Surgery and Interventional Science (DSIS), University College London, Stanmore, United Kingdom.

Haiming Luo (H)

HUB of Intelligent Neuro-Engineering, CREATe, IOMS, Division of Surgery and Interventional Science (DSIS), University College London, Stanmore, United Kingdom.

Jianan Chen (J)

HUB of Intelligent Neuro-Engineering, CREATe, IOMS, Division of Surgery and Interventional Science (DSIS), University College London, Stanmore, United Kingdom.

Rui Loureiro (R)

HUB of Intelligent Neuro-Engineering, CREATe, IOMS, Division of Surgery and Interventional Science (DSIS), University College London, Stanmore, United Kingdom.

Shufan Yang (S)

School of Computing, Engineering and Built Environment, Edinburgh Napier University, Edinburgh, United Kingdom.

Hubin Zhao (H)

HUB of Intelligent Neuro-Engineering, CREATe, IOMS, Division of Surgery and Interventional Science (DSIS), University College London, Stanmore, United Kingdom.

Classifications MeSH