Polarimetric imaging combining optical parameters for classification of mice non-melanoma skin cancer tissue using machine learning.
Classification model
DT classifier
KNN classifier
Linear discriminant analysis
Mueller matrix imaging
Optical polarization
SVM classifier
Skin cancer
Journal
Heliyon
ISSN: 2405-8440
Titre abrégé: Heliyon
Pays: England
ID NLM: 101672560
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
16
06
2023
revised:
02
11
2023
accepted:
03
11
2023
medline:
30
11
2023
pubmed:
30
11
2023
entrez:
30
11
2023
Statut:
epublish
Résumé
Polarimetric imaging systems combining machine learning is emerging as a promising tool for the support of diagnosis and intervention decision-making processes in cancer detection/staging. A present study proposes a novel method based on Mueller matrix imaging combining optical parameters and machine learning models for classifying the progression of skin cancer based on the identification of three different types of mice skin tissues: healthy, papilloma, and squamous cell carcinoma. Three different machine learning algorithms (K-Nearest Neighbors, Decision Tree, and Support Vector Machine (SVM)) are used to construct a classification model using a dataset consisting of Mueller matrix images and optical properties extracted from the tissue samples. The experimental results show that the SVM model is robust to discriminate among three classes in the training stage and achieves an accuracy of 94 % on the testing dataset. Overall, it is provided that polarimetric imaging systems and machine learning algorithms can dynamically combine for the reliable diagnosis of skin cancer.
Identifiants
pubmed: 38034801
doi: 10.1016/j.heliyon.2023.e22081
pii: S2405-8440(23)09289-7
pmc: PMC10682661
doi:
Types de publication
Journal Article
Langues
eng
Pagination
e22081Informations de copyright
© 2023 The Authors.
Déclaration de conflit d'intérêts
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
J Invest Dermatol. 2014 Jan;134(1):43-50
pubmed: 23877569
Oncol Ther. 2016;4(2):315-331
pubmed: 28261658
J Biomed Opt. 2011 Nov;16(11):110801
pubmed: 22112102
J Opt Soc Am A Opt Image Sci Vis. 2016 Jul 1;33(7):1396-408
pubmed: 27409699
CA Cancer J Clin. 2021 May;71(3):209-249
pubmed: 33538338
Int J Cancer. 2021 Apr 5;:
pubmed: 33818764
Curr Treat Options Oncol. 2018 Sep 20;19(11):56
pubmed: 30238167
JAAD Case Rep. 2018 Nov 10;4(10):1014-1023
pubmed: 30456275
Sensors (Basel). 2018 May 05;18(5):
pubmed: 29734747
BMC Bioinformatics. 2016 Sep 09;17(1):359
pubmed: 27612635
J Biomed Opt. 2021 Jul;26(7):
pubmed: 34227277
J Biomed Opt. 2012 Sep;17(9):97002-1
pubmed: 23085921
J Biomed Opt. 2016 Jul 1;21(7):71114
pubmed: 27121763
Nat Commun. 2023 Apr 5;14(1):1902
pubmed: 37019920
Opt Express. 2010 Apr 26;18(9):9133-50
pubmed: 20588761
J Biomed Opt. 2002 Jul;7(3):341-9
pubmed: 12175283
Clin Dermatol. 2021 Jul-Aug;39(4):635-642
pubmed: 34809768
Skin Pharmacol Physiol. 2018;31(5):238-245
pubmed: 29894994
Lasers Med Sci. 2019 Mar;34(2):411-420
pubmed: 30539405
Cochrane Database Syst Rev. 2018 Dec 04;12:CD013189
pubmed: 30521690
Sensors (Basel). 2021 Jan 02;21(1):
pubmed: 33401739
Postepy Dermatol Alergol. 2020 Jun;37(3):364-370
pubmed: 32792877
Dermatol Surg. 2007 Oct;33(10):1158-74
pubmed: 17903149
J Biomed Opt. 2022 Aug;27(9):
pubmed: 36042549
Biomed Opt Express. 2021 Jul 15;12(8):4852-4872
pubmed: 34513229
Clin Oncol (R Coll Radiol). 2019 Nov;31(11):735-737
pubmed: 31540801