Enhanced Dynamics and Charge Transport at the Eutectic Point: A New Paradigm for the Use of Deep Eutectic Solvent Systems.
Journal
JACS Au
ISSN: 2691-3704
Titre abrégé: JACS Au
Pays: United States
ID NLM: 101775714
Informations de publication
Date de publication:
27 Nov 2023
27 Nov 2023
Historique:
received:
28
07
2023
revised:
18
10
2023
accepted:
20
10
2023
medline:
30
11
2023
pubmed:
30
11
2023
entrez:
30
11
2023
Statut:
epublish
Résumé
Deep eutectic solvents (DESs) are a class of versatile solvents with promise for a wide range of applications, from separation processes to electrochemical energy storage technologies. A fundamental understanding of the correlation among the structure, thermodynamics, and dynamics of these materials necessary for targeted rational design for specific applications is still nascent. Here, we employ differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS), and femtosecond transient absorption spectroscopy (fs-TAS) to investigate the correlation among thermodynamics, dynamics, and charge transport in mixtures comprising a wide range of compositions of choline chloride (ChCl) and ethylene glycol (EG). Detailed analyses reveal that (i) the eutectic composition of this prototypical DES occurs in the 15-20 mol % ChCl in the EG range rather than the previously assumed 33 mol %, and (ii) both rotational dynamics and charge transport at the eutectic composition are enhanced in this composition range. These findings highlight the fundamental interplay between thermodynamics and dynamics in determining the properties of DESs that are relevant to many applications.
Identifiants
pubmed: 38034979
doi: 10.1021/jacsau.3c00420
pmc: PMC10685424
doi:
Types de publication
Journal Article
Langues
eng
Pagination
3024-3030Informations de copyright
© 2023 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Acc Chem Res. 2014 Aug 19;47(8):2299-308
pubmed: 24892971
Pharm Dev Technol. 2020 Sep;25(7):779-796
pubmed: 32096665
J Phys Chem B. 2020 Jun 25;124(25):5251-5264
pubmed: 32464060
Int J Pharm X. 2019 Oct 31;1:100034
pubmed: 31993583
Phys Chem Chem Phys. 2022 Mar 2;24(9):5265-5268
pubmed: 35171191
J Am Chem Soc. 2004 Jul 28;126(29):9142-7
pubmed: 15264850
J Phys Chem Lett. 2019 Dec 19;10(24):7956-7964
pubmed: 31804088
J Phys Chem A. 2006 Oct 5;110(39):11223-9
pubmed: 17004730
J Phys Chem B. 2020 Aug 27;124(34):7433-7443
pubmed: 32790407
Eur J Pharm Biopharm. 2016 Jan;98:57-66
pubmed: 26586342
Chem Rev. 2021 Feb 10;121(3):1232-1285
pubmed: 33315380
Nat Commun. 2022 Jan 11;13(1):219
pubmed: 35017478
Phys Chem Chem Phys. 2019 Jul 10;21(27):15046-15061
pubmed: 31241081
Chem Soc Rev. 2012 Nov 7;41(21):7108-46
pubmed: 22806597
J Phys Chem B. 2014 Aug 7;118(31):9378-85
pubmed: 25025600
Angew Chem Int Ed Engl. 2017 Jun 19;56(26):7454-7459
pubmed: 28494114
Bioresour Technol. 2021 Nov;339:125587
pubmed: 34303094
J Phys Chem B. 2021 Aug 12;125(31):8888-8901
pubmed: 34339215