Application of the Human Amniotic Membrane as an Adjuvant Therapy for the Treatment of Hepatocellular Carcinoma.

Adjuvant therapies Amniotic membrane Hepatocellular carcinoma

Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
01 Dec 2023
Historique:
medline: 1 12 2023
pubmed: 1 12 2023
entrez: 30 11 2023
Statut: aheadofprint

Résumé

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related morbidity and mortality worldwide. Current therapeutic approaches suffer significant side effects and lack of clear understanding of their molecular targets. Recent studies reported the anticancer effects, immunomodulatory properties, and antiangiogenic effects of the human amniotic membrane (hAM). hAM is a transparent protective membrane that surrounds the fetus. Preclinical studies showed pro-apoptotic and antiproliferative properties of hAM treatment on cancer cells. Herein, we present the latest findings of the application of the hAM in combating HCC tumorigenesis and the underlying molecular pathogenies and the role of transforming growth factor-beta (TGFβ), P53, WNT/beta-catenin, and PI3K/AKT pathways. The emerging clinical applications of hAM in cancer therapy provide evidence for its diverse and unique features and suitability for the management of a wide range of pathological conditions.

Identifiants

pubmed: 38036871
doi: 10.1007/5584_2023_792
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Adamowicz J et al (2016) New amniotic membrane based biocomposite for future application in reconstructive urology. PLoS One 11(1):e0146012
Agraval U et al (2017) Fresh frozen amniotic membrane for conjunctival reconstruction after excision of neoplastic and presumed neoplastic conjunctival lesions. Eye (Lond) 31(6):884–889
Ahuja N et al (2020) Dehydrated human amnion chorion membrane as treatment for pediatric burns. Adv Wound Care (New Rochelle) 9(11): 602–611
Alves AP et al (2022) Differential response of hepatocellular carcinoma glycolytic metabolism and oxidative stress markers after exposure to human amniotic membrane proteins. Mol Biol Rep 49:7731–7741
Al-Yahya A, Makhlouf MMM (2013) Characterization of the human amniotic membrane: histological, immunohistochemical and ultrastructural studies. Arch Ophthalmol 4(10):3701–3710
Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11–26
Arnold M et al (2020) Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 159(1):335–349. e15
Bailo M et al (2004) Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 78(10):1439–1448
Balogh J et al (2016) Hepatocellular carcinoma: a review. J Hepatocell Carcinoma 3:41–53
Banerjee A et al (2014) In toto differentiation of human amniotic membrane towards the Schwann cell lineage. Cell Tissue Bank 15:227–239
Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115(2):209–218
Beksac AT et al (2019) MP42–08 A phase ii double arm single-blinded randomized screening clinical trial to evaluate the use of a dehydrated human amnion/chorion membrane allograft to facilitate the recovery of renal function following robotic partial nephrectomy. J Urol 201(Supplement 4):e609–e609
Bellomo C, Caja L, Moustakas A (2016) Transforming growth factor β as regulator of cancer stemness and metastasis. Br J Cancer 115(7):761–769
Bengochea A et al (2008) Common dysregulation of Wnt/Frizzled receptor elements in human hepatocellular carcinoma. Br J Cancer 99(1):143–150
Bennett J, Matthews R, Faulk WP (1980) Treatment of chronic ulceration of the legs with human amnion. Lancet 315(8179):1153–1156
Bilic G et al (2008) Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transplant 17(8):955–968
Bonci P, Bonci P, Lia A (2005) Suspension made with amniotic membrane: clinical trial. Eur J Ophthalmol 15(4):441–445
Bruix J, Sherman M (2011) Management of hepatocellular carcinoma: an update. Hepatology 53(3):1020–1022
Budhu A et al (2008) Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47(3):897–907
Buhimschi IA et al (2004) The novel antimicrobial peptide β3-defensin is produced by the amnion: a possible role of the fetal membranes in innate immunity of the amniotic cavity. Am J Obstet Gynecol 191(5):1678–1687
Byun JS, Gardner K (2013) Wounds that will not heal: pervasive cellular reprogramming in cancer. Am J Pathol 182(4):1055–1064
Cabrera R, Nelson DR (2010) Review article: the management of hepatocellular carcinoma. Aliment Pharmacol Ther 31(4):461–476
Caja L et al (2011) The transforming growth factor-beta (TGF-β) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells. J Cell Physiol 226(5):1214–1223
Cao B, Liu C, Yang G (2021) Retraction notice to “down-regulation of lncRNA ADAMTS9-AS2 contributes to gastric cancer development via activation of PI3K/Akt pathway” [Biomed. Pharmacother. 107 (2018) 185–193]. Biomed Pharmacother 142:112116
Carbone A et al (2014) Human amnion-derived cells: prospects for the treatment of lung diseases. Curr Stem Cell Res Ther 9(4):297–305
Carmona-Cuenca I et al (2006) EGF blocks NADPH oxidase activation by TGF-beta in fetal rat hepatocytes, impairing oxidative stress, and cell death. J Cell Physiol 207(2):322–330
Chan KT, Lung ML (2004) Mutant p53 expression enhances drug resistance in a hepatocellular carcinoma cell line. Cancer Chemother Pharmacol 53(6):519–526
Chen J et al (2021) Dehydrated human amnion/chorion membrane allografts for myelomeningocele and wound reconstruction. Childs Nerv Syst 37(12):3721–3731
Choi K et al (2009) Oxidative stress-induced necrotic cell death via mitochondira-dependent burst of reactive oxygen species. Curr Neurovasc Res 6(4):213–222
Cooper LJ et al (2005) An investigation into the composition of amniotic membrane used for ocular surface reconstruction. Cornea 24(6):722–729
Crissien AM, Frenette C (2014) Current management of hepatocellular carcinoma. Gastroenterol Hepatol (N Y) 10(3):153–161
Cui H, Chai Y, Yu Y (2019) Progress in developing decellularized bioscaffolds for enhancing skin construction. J Biomed Mater Res A 107(8):1849–1859
Davis JS (1909) II. Skin grafting at the Johns Hopkins hospital. Ann Surg 50(3):542
Davis JW (1910) Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Med J 15:307–396
Davis A, Augenstein AJAPS (2019) Amniotic allograft implantation for midface aging correction: a retrospective comparative study with platelet-rich plasma. Aesthetic Plast Surg 43:1345–1352
De Coppi P et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106
de Oliveira Pena JD et al (2007) Ultrastructural and growth factor analysis of amniotic membrane preserved by different methods for ocular surgery. Arq Bras Oftalmol 70:756–762
De Rötth A (1940) Plastic repair of conjunctival defects with fetal membranes. Arch Ophthalmol 23(3):522–525
Dhanasekaran R, Limaye A, Cabrera R (2012) Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis, and therapeutics. Hepat Med 4:19–37
Dhiman N et al (2021) Indirect co-culture of lung carcinoma cells with hyperthermia-treated mesenchymal stem cells influences tumor spheroid growth in a collagen-based 3-dimensional microfluidic model. Cytotherapy 23(1):25–36
Dooley S et al (2003) Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 125(1):178–191
Dorazehi F et al (2018) Potential use of amniotic membrane-derived scaffold for cerebrospinal fluid applications. Int J Mol Cell Med 7(2):91
Dvorak HF (1986) Tumors: wounds that do not heal. N Engl J Med 315(26):1650–1659
Dvorak HF (2003) How tumors make bad blood vessels and stroma. Am J Pathol 162(6):1747–1757
Elhamaky TR, Elbarky AMJCO (2019) AS-OCT guided treatment of diffuse conjunctival squamous cell carcinoma with resection, amniotic membrane graft and topical mitomycin C. Clin Ophthalmol 13:2269
El-Serag HB (2002) Hepatocellular carcinoma and hepatitis C in the United States. Hepatology 36(5B):s74–s83
European Association for the Study of the Liver (2018) EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 69(1):182–236
Farhadihosseinabadi B et al (2018) Amniotic membrane and its epithelial and mesenchymal stem cells as an appropriate source for skin tissue engineering and regenerative medicine. Artif Cells Nanomed Biotechnol 46(sup2):431–440
Farzan R et al (2018) Effects of amniotic membrane extract and deferoxamine on angiogenesis in wound healing: an in vivo model. J Wound Care 27(Sup6):S26–s32
Fathy M, Awale S, Nikaido T (2017) Phosphorylated Akt protein at Ser473 enables HeLa cells to tolerate nutrient-deprived conditions. Asian Pac J Cancer Prev 18(12):3255
Futakuchi M et al (2019) The effects of TGF-β signaling on cancer cells and cancer stem cells in the bone microenvironment. Int J Mol Sci 20(20):5117
Giannelli G et al (2005) Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 129(5):1375–1383
Gressner AM et al (2002) Roles of TGF-beta in hepatic fibrosis. Front Biosci 7:d793–d807
Guilak F et al (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5(1):17–26
Güler R et al (1997) Measurement of blood flow by the 133Xe clearance technique to grafts of amnion used in vestibuloplasty. Br J Oral Maxillofac Surg 35(4):280–283
Haddow A (1973) Molecular repair, wound healing, and carcinogenesis: tumor production a possible overhealing? Adv Cancer Res 16:181–234
Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(5):179–183
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674
Hao Y et al (2000) Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 19(3):348–352
Haupt Y et al (1997) Mdm2 promotes the rapid degradation of p53. Nature 387(6630):296–299
Hawkins B (2016) The use of micronized dehydrated human amnion/chorion membrane allograft for the treatment of diabetic foot ulcers: a case series. Wounds 28(5):152–157
He N et al (2018) MSCs inhibit tumor progression and enhance radiosensitivity of breast cancer cells by down-regulating Stat3 signaling pathway. Cell Death Dis 9(10):1026
Heldin CH, Moustakas A (2012) Role of smads in TGFβ signaling. Cell Tissue Res 347(1):21–36
Hopkinson A, Britchford ER, Sidney LE (2020) Preparation of dried amniotic membrane for corneal repair. Methods Mol Biol 2145:143–157
Hossain M et al (2020) Burn and wound healing using radiation sterilized human amniotic membrane and centella asiatica derived gel: a review. Regen Eng Transl Med 6(3):347–357
Hou L et al (2014) Inhibitory effect and mechanism of mesenchymal stem cells on liver cancer cells. Tumour Biol 35(2):1239–1250
Hoxhaj G, Manning BD (2020) The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 20(2):74–88
Hsu IC et al (1991) Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350(6317):427–428
Huang XB et al (2013) Bioinformatics analysis reveals potential candidate drugs for HCC. Pathol Oncol Res 19(2):251–258
Huang X et al (2018) The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 14(11):1483–1496
Hussain SP et al (2007) TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26(15):2166–2176
Inge E et al (1991) Antibacterial properties of human amniotic membranes. Placenta 12(3):285–288
Iravani K et al (2021) The healing effect of amniotic membrane in laryngeal defects in rabbit model. Laryngoscope 131(2):E527–e533
Jafari A et al (2020) The biological mechanism involved in anticancer properties of amniotic membrane. Oncol Rev 14(1):429
Jafari A et al (2021a) Human amniotic mesenchymal stem cells to promote/suppress cancer: two sides of the same coin. Stem Cell Res Ther 12(1):126
Jafari A et al (2021b) Tuemor targeting by conditioned medium derived from human amniotic membrane: new insight in breast cancer therapy. Technol Cancer Res Treat 20:15330338211036318
Janev A et al (2021) Detrimental effect of various preparations of the human amniotic membrane homogenate on the 2D and 3D bladder cancer in vitro models. Front Bioeng Biotechnol 9:539
Jiao H et al (2012) Human amniotic membrane derived-mesenchymal stem cells induce C6 glioma apoptosis in vivo through the Bcl-2/caspase pathways. Mol Biol Rep 39(1):467–473
Jirsova K, Jones GLA (2017) Amniotic membrane in ophthalmology: properties, preparation, storage and indications for grafting-a review. Cell Tissue Bank 18(2):193–204
Kar P (2014) Risk factors for hepatocellular carcinoma in India. J Clin Exp Hepatol 4(Suppl 3):S34–S42
Khademi B et al (2013) Clinical application of amniotic membrane as a biologic dressing in oral cavity and pharyngeal defects after tumor resection. Arch Iran Med 16(9):503–506
Khalil S et al (2016) A cost-effective method to assemble biomimetic 3D cell culture platforms. PLoS One 11(12):e0167116
Kheirkhah A et al (2008) Sutureless amniotic membrane transplantation for partial limbal stem cell deficiency. Am J Ophthalmol 145(5):787–794
Kim JC, Tseng SJC (1995) Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea 14(5):473–484
Kim JS et al (2000) Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn. Exp Eye Res 70(3):329–337
Kim EY et al (2014) Neuronal cell differentiation of mesenchymal stem cells originating from canine amniotic fluid. Hum Cell 27(2):51–58
King A et al (2007) Expression of natural antimicrobials by human placenta and fetal membranes. Placenta 28(2–3):161–169
Kogan S, Sood A, Granick MS (2018) Amniotic membrane adjuncts and clinical applications in wound healing: a review of the literature. Wounds 30(6):168–173
Koizumi N et al (2000) Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20(3):173–177
Kokudo N et al (2019) Clinical practice guidelines for hepatocellular carcinoma: the Japan Society of Hepatology 2017 (4th JSH-HCC guidelines) 2019 update. Hepatol Res 49(10):1109–1113
Kubo M et al (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 42(7):1539–1546
Lau WY, Lai EC (2008) Hepatocellular carcinoma: current management and recent advances. Hepatobiliary Pancreat Dis Int 7(3):237–257
Lawler PR, Lawler J (2012) Molecular basis for the regulation of angiogenesis by thrombospondin-1 and-2. Cold Spring Harb Perspect Med 2(5):a006627
Lee S-H, Tseng SCJ (1997) Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol 123(3):303–312
Lee SB et al (2000) Suppression of TGF-beta signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Curr Eye Res 20(4):325–334
Lee J-K et al (2013) Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PloS one 8(12):e84256
Li H et al (2005) Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 46(3):900–907
Li JY et al (2019) Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway. Stem Cell Res Ther 10(1):247
Lim LS et al (2009) Effect of dispase denudation on amniotic membrane. Mol Vis 15:1962
Lin JS et al (2015) Hepatic differentiation of human amniotic epithelial cells and in vivo therapeutic effect on animal model of cirrhosis. J Gastroenterol Hepatol 30(11):1673–1682
Liu H et al (2018) Synthetic nanofiber-reinforced amniotic membrane via interfacial bonding. ACS Appl Mater Interfaces 10(17):14559–14569
Liu QW et al (2020) Human amniotic mesenchymal stem cells inhibit hepatocellular carcinoma in tumour-bearing mice. J Cell Mol Med 24(18):10525–10541
Liu Y et al (2022a) Global burden of primary liver cancer by five etiologies and global prediction by 2035 based on global burden of disease study 2019. Cancer Med 11(5):1310–1323
Liu QW et al (2022b) Human amniotic mesenchymal stem cells-derived IGFBP-3, DKK-3, and DKK-1 attenuate liver fibrosis through inhibiting hepatic stellate cell activation by blocking Wnt/β-catenin signaling pathway in mice. Stem Cell Res Ther 13(1):224
Llovet JM et al (2018) Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol 15(10):599–616
Llovet JM et al (2021) Hepatocellular carcinoma. Nat Rev Dis Primers 7(1):6
López Martínez JA et al (2021) Use of cryopreserved human amniotic membrane in the treatment of skin ulcers secondary to calciphylaxis. Dermatol Ther 34(2):e14769
Magatti M et al (2008) Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells 26(1):182–192
Magatti M et al (2012) Amniotic membrane-derived cells inhibit proliferation of cancer cell lines by inducing cell cycle arrest. Mol Ther 16(9):2208–2218
Mamede AC et al (2012) Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 349(2):447–458
Mamede AC et al (2014) Effect of amniotic membrane proteins in human cancer cell lines: an exploratory study. J Membr Biol 247(4):357–360
Mamede A et al (2015) Selective cytotoxicity and cell death induced by human amniotic membrane in hepatocellular carcinoma. Med Oncol 32(12):1–11
Mamede A et al (2016) Oxidative stress, DNA, cell cycle/cell cycle associated proteins and multidrug resistance proteins: targets of human amniotic membrane in hepatocellular carcinoma. Pathol Oncol Res 22(4):689–697
Manuelpillai U et al (2010) Transplantation of human amnion epithelial cells reduces hepatic fibrosis in immunocompetent CCl
Marongiu F et al (2010) Isolation of amniotic mesenchymal stem cells. Curr Protoc Stem Cell Biol 12(1):1E. 5.1–1E. 5.11
Marra F (2002) Chemokines in liver inflammation and fibrosis. Front Biosci 7:d1899–d1914
Meller D, Tseng SCG (1999) Conjunctival epithelial cell differentiation on amniotic membrane. Invest Ophthalmol Vis Sci 40(5):878–886
Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12(6):325–338
Midgley CA, Lane DP (1997) p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15(10):1179–1189
Milan PB et al (2020) Decellularized human amniotic membrane: from animal models to clinical trials. Methods 171:11–19
Mohan R, Bajaj A, Gundappa M (2017) Human amnion membrane: potential applications in oral and periodontal field. J Int Soc Prev Community Dent 7(1):15–21
Momeni M et al (2018) In vitro and in vivo investigation of a novel amniotic-based chitosan dressing for wound healing. Wound Repair Regen 26(1):87–101
Moon JH et al (2008) Successful vitrification of human amnion-derived mesenchymal stem cells. Hum Reprod 23(8):1760–1770
Moreno SE et al (2021) Dehydrated human amniotic membrane modulates canonical Wnt signaling in multiple cell types in vitro. Eur J Cell Biol 100(5–6):151168
Motamed M et al (2017) Tissue engineered human amniotic membrane application in mouse ovarian follicular culture. Ann Biomed Eng 45(7):1664–1675
Murri MS et al (2018) Amniotic membrane extract and eye drops: a review of literature and clinical application. Clin Ophthalmol 12:1105–1112
Naeem A et al (2022) A comparison of isolation and culture protocols for human amniotic mesenchymal stem cells. Cell Cycle 21(15):1543–1556
Nelson WJ, Nusse R (2004) Convergence of Wnt, ß-catenin, and cadherin pathways. Science 303(5663):1483–1487
Nguyen D et al (2017) Reviving the guardian of the genome: small molecule activators of p53. Pharmacol Ther 178:92–108
Niknejad H, Yazdanpanah G (2014) Anticancer effects of human amniotic membrane and its epithelial cells. Med Hypotheses 82(4):488–489
Niknejad H et al (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 15:88–99
Niknejad H et al (2010) Differentiation factors that influence neuronal markers expression in vitro from human amniotic epithelial cells. Eur Cell Mater 19:22–29
Niknejad H et al (2013) Inhibition of HSP90 could be possible mechanism for anti-cancer property of amniotic membrane. Med Hypotheses 81(5):862–865
Niknejad H, Yazdanpanah G, Ahmadiani A (2016) Induction of apoptosis, stimulation of cell-cycle arrest and inhibition of angiogenesis make human amnion-derived cells promising sources for cell therapy of cancer. Cell Tissue Res 363(3):599–608
Noël J et al (2022) Nerve spare robot assisted laparoscopic prostatectomy with amniotic membranes: medium term outcomes. J Robot Surg 16:1219–1224
Nogami M et al (2012) Isolation and characterization of human amniotic mesenchymal stem cells and their chondrogenic differentiation. Transplantation 93(12):1221–1228
Nubile M et al (2008) Amniotic membrane transplantation for the management of corneal epithelial defects: an in vivo confocal microscopic study. Br J Ophthalmol 92(1):54–60
Overall CM, López-Otín CJNRC (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era 2(9):657–672
Palamar M et al (2018) Amniotic membrane transplantation in surgical treatment of conjunctival melanoma: long-term results. Turk J Ophthalmol 48(1):15
Pappa KI, Anagnou NP (2009) Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 4:423
Parolini O et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 26(2):300–311
Peirovi H et al (2012) Implantation of amniotic membrane as a vascular substitute in the external jugular vein of juvenile sheep. J Vasc Surg 56(4):1098–1104
Peng H, Zhu E, Zhang YJBR (2022) Advances of cancer-associated fibroblasts in liver cancer. Biomark Res 10(1):59
Portmann-Lanz CB et al (2006) Placental mesenchymal stem cells as potential autologous graft for pre-and perinatal neuroregeneration. Am J Obstet Gynecol 194(3):664–673
Qin S et al (2021) Donafenib versus sorafenib in first-line treatment of unresectable or metastatic hepatocellular carcinoma: a randomized, open-label, parallel-controlled phase II-III trial. J Clin Oncol 39(27):3002–3011
Qin L et al (2022) A novel long-term intravenous combined with local treatment with human amnion-derived mesenchymal stem cells for a multidisciplinary rescued uremic calciphylaxis patient and the underlying mechanism. J Mol Cell Biol 14(2):mjac010
Qiu GH et al (2015) Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology 67(1):1–12
Rahavian AH et al (2021) Using dry human amniotic membrane in secondary intention wound healing after urological cancer surgery: the first randomized clinical trial in Iran. Int. J. Cancer Manag 14(5):e111421
Ramuta T, Kreft ME (2018) Human amniotic membrane and amniotic membrane-derived cells: how far are we from their use in regenerative and reconstructive urology? Cell Transplant 27(1):77–92
Ramuta TŽ et al (2020) The cells and extracellular matrix of human amniotic membrane hinder the growth and invasive potential of bladder urothelial cancer cells. Front Bioeng Biotechnol 8:1301
Reece DS et al (2020) Reduced size profile of amniotic membrane particles decreases osteoarthritis therapeutic efficacy. Tissue Eng Part A 26(1–2):28–37
Rennie K et al (2012) Applications of amniotic membrane and fluid in stem cell biology and regenerative medicine. Stem Cells Int 2012:721538
Riedel R et al (2019) Human amniotic membrane conditioned medium inhibits proliferation and modulates related microRNAs expression in hepatocarcinoma cells. Sci Rep 9(1):14193
Roubelakis MG, Trohatou O, Anagnou NP (2012) Amniotic fluid and amniotic membrane stem cells: marker discovery. Stem Cells Int 2012:107836
Sahin F et al (2004) mTOR and P70 S6 kinase expression in primary liver neoplasms. Clin Cancer Res 10(24):8421–8425
Salah RA, Mohamed IK, El-Badri N (2018) Development of decellularized amniotic membrane as a bioscaffold for bone marrow-derived mesenchymal stem cells: ultrastructural study. J Mol Histol 49(3):289–301
SantAnna LB et al (2016) Antifibrotic effects of human amniotic membrane transplantation in established biliary fibrosis induced in rats. Cell Transplant 25(12):2245–2257
Santi A, Kugeratski FG, Zanivan SJP (2018) Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics 18(5–6):1700167
Scheau C et al (2019) The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal Cell Pathol (Amst) 2019:9423907
Schuerch K et al (2020) Efficacy of amniotic membrane transplantation for the treatment of corneal ulcers. Cornea 39(4):479–483
Shariff MI et al (2009) Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis and therapeutics. Expert Rev Gastroenterol Hepatol 3(4):353–367
Shen C et al (2019) Comparison of osteogenic differentiation capacity in mesenchymal stem cells derived from human amniotic membrane (AM), umbilical cord (UC), chorionic membrane (CM), and decidua (DC). Cell Biosci 9:1–11
Shi D, Gu W (2012) Dual roles of MDM2 in the regulation of p53: ubiquitination dependent and ubiquitination independent mechanisms of MDM2 repression of p53 activity. Genes Cancer 3(3–4):240–248
Shpichka A et al (2019) Skin tissue regeneration for burn injury. Stem Cell Res Ther 10:1–16
Silini A et al (2013) Soluble factors of amnion-derived cells in treatment of inflammatory and fibrotic pathologies. Curr Stem Cell Res Ther 8(1):6–14
Simat SF et al (2008) The stemness gene expression of cultured human amniotic epithelial cells in serial passages. Med J Malaysia 63 Suppl A:53–54
Solomon A et al (2001) Suppression of interleukin 1α and interleukin 1β in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br J Ophthalmol 85(4):444–449
Son B et al (2017) The role of tumor microenvironment in therapeutic resistance. Oncotarget 8(3):3933–3945
Stock SJ et al (2007) Natural antimicrobial production by the amnion. Am J Obstet Gynecol 196(3):255.e1–e6
Sugarman J et al (2018) Ethical considerations concerning amnioinfusions for treating fetal bilateral renal agenesis. Obstet Gynecol 131(1):130–134
Sun EJ et al (2021) Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomedicine 9(11):1639
Tabatabaei M et al (2014) Isolation and partial characterization of human amniotic epithelial cells: the effect of trypsin. Avicenna J Med Biotechnol 6(1):10
Tabatabaei M et al (2018) Vaccination with human amniotic epithelial cells confer effective protection in a murine model of Colon adenocarcinoma. Int J Cancer 142(7):1453–1466
Tanideh N et al (2020) Healing effects of human amniotic membrane and burned wool on the second-degree burn in rats. Galen Med J 9:e1759
Tseng SC, Li DQ, Ma X (1999) Suppression of transforming growth factor-beta isoforms, TGF-β receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol 179(3):325–335
Ueta M et al (2002) Immunosuppressive properties of human amniotic membrane for mixed lymphocyte reaction. Clin Exp Immunol 129(3):464–470
Vaheb M et al (2020) Evaluation of dried amniotic membrane on wound healing at split-thickness skin graft donor sites: a randomized, placebo-controlled, double-blind trial. Adv Skin Wound Care 33(12):636–641
Valcourt U et al (2005) TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16(4):1987–2002
Vidane AS et al (2014) Cat amniotic membrane multipotent cells are nontumorigenic and are safe for use in cell transplantation. Stem Cells Cloning 7:71–78
Villanueva A et al (2008) Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 135(6):1972–1983. e11
Wang HY et al (2014) HBx protein promotes oval cell proliferation by up-regulation of cyclin D1 via activation of the MEK/ERK and PI3K/Akt pathways. Int J Mol Sci 15(3):3507–3518
Wells WJC (1946) Amniotic membrane for corneal grafting. Br Med J 2(4477):624
Westekemper H et al (2017) Clinical outcomes of amniotic membrane transplantation in the management of acute ocular chemical injury. Br J Ophthalmol 101(2):103–107
Winer A, Adams S, Mignatti P (2018) Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol Cancer Ther 17(6):1147–1155
Wu G et al (2013) UCN-01 induces S and G2/M cell cycle arrest through the p53/p21waf1or CHK2/CDC25C pathways and can suppress invasion in human hepatoma cell lines. BMC Cancer 13(1):1–9
Xu J et al (2014) Research on liver regeneration driven by the amniotic membrane. Chin Med J 127(7):1382–1384
Xu C et al (2022) β-Catenin signaling in hepatocellular carcinoma. J Clin Invest 132(4):e154515
Yang JD, Roberts LR (2010) Epidemiology and management of hepatocellular carcinoma. Infect Dis Clin N Am 24(4):899–919, viii
Yang JD et al (2019) A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 16(10):589–604
Yap TA et al (2008) Targeting the PI3K–AKT–mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 8(4):393–412
Yu S et al (2015) Construction of tissue engineered skin with human amniotic mesenchymal stem cells and human amniotic epithelial cells. Eur Rev Med Pharmacol Sci 19(23):4627–4635
Yuan L et al (2019) Exosomes derived from MicroRNA-148b-3p-overexpressing human umbilical cord mesenchymal stem cells restrain breast cancer progression. Front Oncol 9:1076
Yulyana Y et al (2015) Paracrine factors of human fetal MSCs inhibit liver cancer growth through reduced activation of IGF-1R/PI3K/Akt signaling. Mol Ther 23(4):746–756
Zhang C-L et al (2017) Stem cells in cancer therapy: opportunities and challenges. Oncotarget 8(43):75756
Zhang K et al (2019) The hepatocyte-specifically expressed lnc-HSER alleviates hepatic fibrosis by inhibiting hepatocyte apoptosis and epithelial-mesenchymal transition. Theranostics 9(25):7566–7582
Zhang D et al (2021) Cryopreserved skin epithelial cell sheet combined with acellular amniotic membrane as an off-the-shelf scaffold for urethral regeneration. Mater Sci Eng C Mater Biol Appl 122:111926

Auteurs

Ahmed M Abou-Shanab (AM)

Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt.

Ola A Gaser (OA)

Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt.

Radwa Ayman Salah (RA)

Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt.

Nagwa El-Badri (N)

Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt. nelbadri@zewailcity.edu.eg.

Classifications MeSH