Critical Care Management of Patients After Cardiac Arrest: A Scientific Statement from the American Heart Association and Neurocritical Care Society.

AHA scientific statements Critical care Heart arrest Hypoxia–ischemia, brain Resuscitation Shock, cardiogenic

Journal

Neurocritical care
ISSN: 1556-0961
Titre abrégé: Neurocrit Care
Pays: United States
ID NLM: 101156086

Informations de publication

Date de publication:
01 Dec 2023
Historique:
received: 08 06 2023
accepted: 08 06 2023
medline: 2 12 2023
pubmed: 2 12 2023
entrez: 1 12 2023
Statut: aheadofprint

Résumé

The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.

Identifiants

pubmed: 38040992
doi: 10.1007/s12028-023-01871-6
pii: 10.1007/s12028-023-01871-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s).

Références

Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, on behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee, et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation. 2020;141:e139–596. https://doi.org/10.1161/CIR.0000000000000757 .
doi: 10.1161/CIR.0000000000000757 pubmed: 31992061
Kiguchi T, Okubo M, Nishiyama C, Maconochie I, Ong MEH, Kern KB, Wyckoff MH, McNally B, Christensen EF, Tjelmeland I, et al. Out-of-hospital cardiac arrest across the world: first report from the International Liaison Committee on Resuscitation (ILCOR). Resuscitation. 2020;152:39–49. https://doi.org/10.1016/j.resuscitation.2020.02.044 .
doi: 10.1016/j.resuscitation.2020.02.044 pubmed: 32272235
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, on behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee, et al. Heart disease and stroke statistics—2022 update: a report from the American Heart Association [published correction appears in Circulation. 2022;146:e141]. Circulation. 2022;145:e153–639. https://doi.org/10.1161/CIR.0000000000001052 .
doi: 10.1161/CIR.0000000000001052 pubmed: 35078371
Girotra S, Nallamothu BK, Tang Y, Chan PS, American Heart Association Get With The Guidelines–Resuscitation Investigators. Association of hospital-level acute resuscitation and postresuscitation survival with overall risk-standardized survival to discharge for in-hospital cardiac arrest. JAMA Netw Open. 2020;3:e2010403. https://doi.org/10.1001/jamanetworkopen.2020.10403 .
doi: 10.1001/jamanetworkopen.2020.10403 pubmed: 32648925 pmcid: 7352153
Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, Kudenchuk PJ, Kurz MC, Lavonas EJ, Morley PT, on behalf of the Adult Basic and Advanced Life Support Writing Group, et al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142(suppl 2):S366–468. https://doi.org/10.1161/CIR.0000000000000916 .
doi: 10.1161/CIR.0000000000000916 pubmed: 33081529
Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Böttiger BW, Callaway C, Clark RSB, Geocadin RG, Jauch EC, et al. Post–cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication: a consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 2008;118:2452–83.
doi: 10.1161/CIRCULATIONAHA.108.190652 pubmed: 18948368
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, et al. European Resuscitation Council and European Society of Intensive Care medicine guidelines 2021: post-resuscitation care. Resuscitation. 2021;161:220–69. https://doi.org/10.1016/j.resuscitation.2021.02.012 .
doi: 10.1016/j.resuscitation.2021.02.012 pubmed: 33773827
Soar J, Böttiger BW, Carli P, Couper K, Deakin CD, Djärv T, Lott C, Olasveengen T, Paal P, Pellis T, et al. European Resuscitation Council guidelines 2021: adult advanced life support. Resuscitation. 2021;161:115–51. https://doi.org/10.1016/j.resuscitation.2021.02.010 .
doi: 10.1016/j.resuscitation.2021.02.010 pubmed: 33773825
Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ, GRADE Working Group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6. https://doi.org/10.1136/bmj.39489.470347.AD .
doi: 10.1136/bmj.39489.470347.AD pubmed: 18436948 pmcid: 2335261
Balian S, Buckler DG, Blewer AL, Bhardwaj A, Abella BS, CARES Surveillance Group. Variability in survival and post-cardiac arrest care following successful resuscitation from out-of-hospital cardiac arrest. Resuscitation. 2019;137:78–86. https://doi.org/10.1016/j.resuscitation.2019.02.004 .
doi: 10.1016/j.resuscitation.2019.02.004 pubmed: 30771450
May TL, Lary CW, Riker RR, Friberg H, Patel N, Søreide E, McPherson JA, Undén J, Hand R, Sunde K, et al. Variability in functional outcome and treatment practices by treatment center after out-of-hospital cardiac arrest: analysis of International Cardiac Arrest Registry. Intensive Care Med. 2019;45:637–46. https://doi.org/10.1007/s00134-019-05580-7 .
doi: 10.1007/s00134-019-05580-7 pubmed: 30848327 pmcid: 6486427
Madden LK, Hill M, May TL, Human T, Guanci MM, Jacobi J, Moreda MV, Badjatia N. The implementation of targeted temperature management: an evidence-based guideline from the Neurocritical Care Society. Neurocrit Care. 2017;27:468–87. https://doi.org/10.1007/s12028-017-0469-5 .
doi: 10.1007/s12028-017-0469-5 pubmed: 29038971
Geocadin RG, Callaway CW, Fink EL, Golan E, Greer DM, Ko NU, Lang E, Licht DJ, Marino BS, McNair ND, on behalf of the American Heart Association Emergency Cardiovascular Care Committee, et al. Standards for studies of neurological prognostication in comatose survivors of cardiac arrest: a scientific statement from the American Heart Association. Circulation. 2019;140:e517–42. https://doi.org/10.1161/CIR.0000000000000702 .
doi: 10.1161/CIR.0000000000000702 pubmed: 31291775
Cook AM, Morgan Jones G, Hawryluk GWJ, Mailloux P, McLaughlin D, Papangelou A, Samuel S, Tokumaru S, Venkatasubramanian C, Zacko C, et al. Guidelines for the acute treatment of cerebral edema in neurocritical care patients. Neurocrit Care. 2020;32:647–66. https://doi.org/10.1007/s12028-020-00959-7 .
doi: 10.1007/s12028-020-00959-7 pubmed: 32227294 pmcid: 7272487
Nolan JP, Sandroni C, Andersen LW, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Lilja G, Morley PT, et al. ERC-ESICM guidelines on temperature control after cardiac arrest in adults. Resuscitation. 2022;172:229–36. https://doi.org/10.1016/j.resuscitation.2022.01.009 .
doi: 10.1016/j.resuscitation.2022.01.009 pubmed: 35131119
The Joint Commission. R3 report issue 29: resuscitation standards for hospitals. 2021. https://jointcommission.org/standards/r3-report/r3-report-issue-29-resuscitation-standards-for-hospitals/#.Yv0gdBrMKUk . Accessed 12 Jan 2022.
Ruijter BJ, Keijzer HM, Tjepkema-Cloostermans MC, Blans MJ, Beishuizen A, Tromp SC, Scholten E, Horn J, van Rootselaar AF, Admiraal MM, et al. Treating rhythmic and periodic EEG patterns in comatose survivors of cardiac arrest. N Engl J Med. 2022;386:724–34. https://doi.org/10.1056/NEJMoa2115998 .
doi: 10.1056/NEJMoa2115998 pubmed: 35196426
Kjaergaard J, Møller JE, Schmidt H, Grand J, Mølstrøm S, Borregaard B, Venø S, Sarkisian L, Mamaev D, Jensen LO, et al. Blood-pressure targets in comatose survivors of cardiac arrest. N Engl J Med. 2022;387:1456–66. https://doi.org/10.1056/NEJMoa2208687 .
doi: 10.1056/NEJMoa2208687 pubmed: 36027564
Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap): a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81. https://doi.org/10.1016/j.jbi.2008.08.010 .
doi: 10.1016/j.jbi.2008.08.010 pubmed: 18929686
Elmer J, Flickinger KL, Anderson MW, Koller AC, Sundermann ML, Dezfulian C, Okonkwo DO, Shutter LA, Salcido DD, Callaway CW, et al. Effect of neuromonitor-guided titrated care on brain tissue hypoxia after opioid overdose cardiac arrest. Resuscitation. 2018;129:121–6. https://doi.org/10.1016/j.resuscitation.2018.04.013 .
doi: 10.1016/j.resuscitation.2018.04.013 pubmed: 29679696 pmcid: 6054552
Sekhon MS, Gooderham P, Menon DK, Brasher PMA, Foster D, Cardim D, Czosnyka M, Smielewski P, Gupta AK, Ainslie PN, et al. The burden of brain hypoxia and optimal mean arterial pressure in patients with hypoxic ischemic brain injury after cardiac arrest. Crit Care Med. 2019;47:960–9. https://doi.org/10.1097/CCM.0000000000003745 .
doi: 10.1097/CCM.0000000000003745 pubmed: 30889022
Sekhon MS, Griesdale DE, Ainslie PN, Gooderham P, Foster D, Czosnyka M, Robba C, Cardim D. Intracranial pressure and compliance in hypoxic ischemic brain injury patients after cardiac arrest. Resuscitation. 2019;141:96–103. https://doi.org/10.1016/j.resuscitation.2019.05.036 .
doi: 10.1016/j.resuscitation.2019.05.036 pubmed: 31185256
Chae MK, Lee SE, Kang SY, Sim MS. Monitoring of cerebral metabolism in postcardiac arrest patients: a pilot study. Ther Hypothermia Temp Manag. 2018;8:234–8. https://doi.org/10.1089/ther.2018.0018 .
doi: 10.1089/ther.2018.0018 pubmed: 30124387 pmcid: 6302816
Kilgannon JH, Roberts BW, Jones AE, Mittal N, Cohen E, Mitchell J, Chansky ME, Trzeciak S. Arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest. Crit Care Med. 2014;42:2083–91. https://doi.org/10.1097/CCM.0000000000000406 .
doi: 10.1097/CCM.0000000000000406 pubmed: 24901606
Ameloot K, Meex I, Genbrugge C, Jans F, Boer W, Verhaert D, Mullens W, Ferdinande B, Dupont M, De Deyne C, et al. Hemodynamic targets during therapeutic hypothermia after cardiac arrest: a prospective observational study. Resuscitation. 2015;91:56–62. https://doi.org/10.1016/j.resuscitation.2015.03.016 .
doi: 10.1016/j.resuscitation.2015.03.016 pubmed: 25828921
Laurikkala J, Wilkman E, Pettilä V, Kurola J, Reinikainen M, Hoppu S, Ala-Kokko T, Tallgren M, Tiainen M, Vaahersalo J, FINNRESUSCI Study Group, et al. Mean arterial pressure and vasopressor load after out-of-hospital cardiac arrest: associations with one-year neurologic outcome. Resuscitation. 2016;105:116–22. https://doi.org/10.1016/j.resuscitation.2016.05.026 .
doi: 10.1016/j.resuscitation.2016.05.026 pubmed: 27283060
Russo JJ, Di Santo P, Simard T, James TE, Hibbert B, Couture E, Marbach J, Osborne C, Ramirez FD, Wells GA, CAPITAL Study Group, et al. Optimal mean arterial pressure in comatose survivors of out-of-hospital cardiac arrest: an analysis of area below blood pressure thresholds. Resuscitation. 2018;128:175–80. https://doi.org/10.1016/j.resuscitation.2018.04.028 .
doi: 10.1016/j.resuscitation.2018.04.028 pubmed: 29694851
Roberts BW, Kilgannon JH, Hunter BR, Puskarich MA, Shea L, Donnino M, Jones C, Fuller BM, Kline JA, Jones AE, et al. Association between elevated mean arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest: results from a multicenter prospective cohort study. Crit Care Med. 2019;47:93–100. https://doi.org/10.1097/CCM.0000000000003474 .
doi: 10.1097/CCM.0000000000003474 pubmed: 30303836 pmcid: 6298823
Ameloot K, De Deyne C, Eertmans W, Ferdinande B, Dupont M, Palmers PJ, Petit T, Nuyens P, Maeremans J, Vundelinckx J, et al. Early goal-directed haemodynamic optimization of cerebral oxygenation in comatose survivors after cardiac arrest: the neuroprotect post–cardiac arrest trial. Eur Heart J. 2019;40:1804–14. https://doi.org/10.1093/eurheartj/ehz120 .
doi: 10.1093/eurheartj/ehz120 pubmed: 30895296
Jakkula P, Pettilä V, Skrifvars MB, Hästbacka J, Loisa P, Tiainen M, Wilkman E, Toppila J, Koskue T, Bendel S, COMACARE Study Group, et al. Targeting low-normal or high-normal mean arterial pressure after cardiac arrest and resuscitation: a randomised pilot trial. Intensive Care Med. 2018;44:2091–101. https://doi.org/10.1007/s00134-018-5446-8 .
doi: 10.1007/s00134-018-5446-8 pubmed: 30443729 pmcid: 6280836
Ameloot K, Jakkula P, Hästbacka J, Reinikainen M, Pettilä V, Loisa P, Tiainen M, Bendel S, Birkelund T, Belmans A, et al. Optimum blood pressure in patients with shock after acute myocardial infarction and cardiac arrest. J Am Coll Cardiol. 2020;76:812–24. https://doi.org/10.1016/j.jacc.2020.06.043 .
doi: 10.1016/j.jacc.2020.06.043 pubmed: 32792079
Sundgreen C, Larsen FS, Herzog TM, Knudsen GM, Boesgaard S, Aldershvile J. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke. 2001;32:128–32. https://doi.org/10.1161/01.str.32.1.128 .
doi: 10.1161/01.str.32.1.128 pubmed: 11136927
Czosnyka M, Brady K, Reinhard M, Smielewski P, Steiner LA. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit Care. 2009;10:373–86. https://doi.org/10.1007/s12028-008-9175-7 .
doi: 10.1007/s12028-008-9175-7 pubmed: 19127448
Depreitere B, Citerio G, Smith M, Adelson PD, Aries MJ, Bleck TP, Bouzat P, Chesnut R, De Sloovere V, Diringer M, et al. Cerebrovascular autoregulation monitoring in the management of adult severe traumatic brain injury: a Delphi consensus of clinicians. Neurocrit Care. 2021;34:731–8. https://doi.org/10.1007/s12028-020-01185-x .
doi: 10.1007/s12028-020-01185-x pubmed: 33495910 pmcid: 8179892
Rivera-Lara L, Geocadin R, Zorrilla-Vaca A, Healy R, Radzik BR, Palmisano C, Mirski M, Ziai WC, Hogue C. Validation of near-infrared spectroscopy for monitoring cerebral autoregulation in comatose patients. Neurocrit Care. 2017;27:362–9. https://doi.org/10.1007/s12028-017-0421-8 .
doi: 10.1007/s12028-017-0421-8 pubmed: 28664392 pmcid: 5772737
Hirsch KG, Fischbein N, Mlynash M, Kemp S, Bammer R, Eyngorn I, Tong J, Moseley M, Venkatasubramanian C, Caulfield AF, et al. Prognostic value of diffusion-weighted MRI for post-cardiac arrest coma. Neurology. 2020;94:e1684–92. https://doi.org/10.1212/WNL.0000000000009289 .
doi: 10.1212/WNL.0000000000009289 pubmed: 32269116 pmcid: 7282878
Wu O, Sorensen AG, Benner T, Singhal AB, Furie KL, Greer DM. Comatose patients with cardiac arrest: predicting clinical outcome with diffusion-weighted MR imaging. Radiology. 2009;252:173–81. https://doi.org/10.1148/radiol.2521081232 .
doi: 10.1148/radiol.2521081232 pubmed: 19420318 pmcid: 2702469
Esdaille CJ, Coppler PJ, Faro JW, Weisner ZM, Condle JP, Elmer J, Callaway CW, Pittsburgh Post Cardiac Arrest Service. Duration and clinical features of cardiac arrest predict early severe cerebral edema. Resuscitation. 2020;153:111–8. https://doi.org/10.1016/j.resuscitation.2020.05.049 .
doi: 10.1016/j.resuscitation.2020.05.049 pubmed: 32590271 pmcid: 7733324
Sandroni C, D’Arrigo S, Cacciola S, Hoedemaekers CWE, Kamps MJA, Oddo M, Taccone FS, Di Rocco A, Meijer FJA, Westhall E, et al. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med. 2020;46:1803–51. https://doi.org/10.1007/s00134-020-06198-w .
doi: 10.1007/s00134-020-06198-w pubmed: 32915254 pmcid: 7527362
Sakabe T, Tateishi A, Miyauchi Y, Maekawa T, Matsumoto M, Tsutsui T, Takeshita H. Intracranial pressure following cardiopulmonary resuscitation. Intensive Care Med. 1987;13:256–9. https://doi.org/10.1007/BF00265114 .
doi: 10.1007/BF00265114 pubmed: 3611496
Gueugniaud PY, Garcia-Darennes F, Gaussorgues P, Bancalari G, Petit P, Robert D. Prognostic significance of early intracranial and cerebral perfusion pressures in post-cardiac arrest anoxic coma. Intensive Care Med. 1991;17:392–8. https://doi.org/10.1007/BF01720676 .
doi: 10.1007/BF01720676 pubmed: 1774392
Naito H, Isotani E, Callaway CW, Hagioka S, Morimoto N. Intracranial pressure increases during rewarming period after mild therapeutic hypothermia in postcardiac arrest patients. Ther Hypothermia Temp Manag. 2016;6:189–93. https://doi.org/10.1089/ther.2016.0009 .
doi: 10.1089/ther.2016.0009 pubmed: 27213805
Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, Bratton SL, Chesnut R, Harris OA, Kissoon N, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80:6–15. https://doi.org/10.1227/NEU.0000000000001432 .
doi: 10.1227/NEU.0000000000001432 pubmed: 27654000
Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care. 2017;21:90. https://doi.org/10.1186/s13054-017-1670-9 .
doi: 10.1186/s13054-017-1670-9 pubmed: 28403909 pmcid: 5390465
Hawryluk GWJ, Aguilera S, Buki A, Bulger E, Citerio G, Cooper DJ, Arrastia RD, Diringer M, Figaji A, Gao G, et al. A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2019;45:1783–94. https://doi.org/10.1007/s00134-019-05805-9 .
doi: 10.1007/s00134-019-05805-9 pubmed: 31659383 pmcid: 6863785
Cardim D, Griesdale DE, Ainslie PN, Robba C, Calviello L, Czosnyka M, Smielewski P, Sekhon MS. A comparison of non-invasive versus invasive measures of intracranial pressure in hypoxic ischaemic brain injury after cardiac arrest. Resuscitation. 2019;137:221–8. https://doi.org/10.1016/j.resuscitation.2019.01.002 .
doi: 10.1016/j.resuscitation.2019.01.002 pubmed: 30629992
Ertl M, Weber S, Hammel G, Schroeder C, Krogias C. Transorbital sonography for early prognostication of hypoxic-ischemic encephalopathy after cardiac arrest. J Neuroimaging. 2018;28:542–8. https://doi.org/10.1111/jon.12528 .
doi: 10.1111/jon.12528 pubmed: 29883008
Chelly J, Deye N, Guichard JP, Vodovar D, Vong L, Jochmans S, Thieulot-Rolin N, Sy O, Serbource-Goguel J, Vinsonneau C, et al. The optic nerve sheath diameter as a useful tool for early prediction of outcome after cardiac arrest: a prospective pilot study. Resuscitation. 2016;103:7–13. https://doi.org/10.1016/j.resuscitation.2016.03.006 .
doi: 10.1016/j.resuscitation.2016.03.006 pubmed: 26995663
Greer D, Scripko P, Bartscher J, Sims J, Camargo E, Singhal A, Furie K. Serial MRI changes in comatose cardiac arrest patients. Neurocrit Care. 2011;14:61–7. https://doi.org/10.1007/s12028-010-9457-8 .
doi: 10.1007/s12028-010-9457-8 pubmed: 20931362
Snyder BD, Hauser WA, Loewenson RB, Leppik IE, Ramirez-Lassepas M, Gumnit RJ. Neurologic prognosis after cardiopulmonary arrest, III: seizure activity. Neurology. 1980;30:1292–7. https://doi.org/10.1212/wnl.30.12.1292 .
doi: 10.1212/wnl.30.12.1292 pubmed: 7192809
Krumholz A, Stern BJ, Weiss HD. Outcome from coma after cardiopulmonary resuscitation: relation to seizures and myoclonus. Neurology. 1988;38:401–5. https://doi.org/10.1212/wnl.38.3.401 .
doi: 10.1212/wnl.38.3.401 pubmed: 3347343
Rittenberger JC, Popescu A, Brenner RP, Guyette FX, Callaway CW. Frequency and timing of nonconvulsive status epilepticus in comatose post-cardiac arrest subjects treated with hypothermia. Neurocrit Care. 2012;16:114–22. https://doi.org/10.1007/s12028-011-9565-0 .
doi: 10.1007/s12028-011-9565-0 pubmed: 21638118 pmcid: 3188346
Mani R, Schmitt SE, Mazer M, Putt ME, Gaieski DF. The frequency and timing of epileptiform activity on continuous electroencephalogram in comatose post-cardiac arrest syndrome patients treated with therapeutic hypothermia. Resuscitation. 2012;83:840–7. https://doi.org/10.1016/j.resuscitation.2012.02.015 .
doi: 10.1016/j.resuscitation.2012.02.015 pubmed: 22366352 pmcid: 8851397
Eilam A, Samogalskyi V, Bregman G, Eliner-Avishai S, Gilad R. Occurrence of overt seizures in comatose survivor patients treated with targeted temperature. Brain Behav. 2017;7:e00842. https://doi.org/10.1002/brb3.842 .
doi: 10.1002/brb3.842 pubmed: 29201544 pmcid: 5698861
Amorim E, Rittenberger JC, Zheng JJ, Westover MB, Baldwin ME, Callaway CW, Popescu A, Post Cardiac Arrest Service. Continuous EEG monitoring­enhances multimodal outcome prediction in hypoxic-ischemic brain injury. Resuscitation. 2016;109:121–6. https://doi.org/10.1016/j.resuscitation.2016.08.012 .
doi: 10.1016/j.resuscitation.2016.08.012 pubmed: 27554945 pmcid: 5124407
Westhall E, Rossetti AO, van Rootselaar AF, Wesenberg Kjaer T, Horn J, Ullén S, Friberg H, Nielsen N, Rosén I, Åneman A, TTM-Trial Investigators, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology. 2016;86:1482–90. https://doi.org/10.1212/WNL.0000000000002462 .
doi: 10.1212/WNL.0000000000002462 pubmed: 26865516 pmcid: 4836886
Backman S, Westhall E, Dragancea I, Friberg H, Rundgren M, Ullén S, Cronberg T. Electroencephalographic characteristics of status epilepticus after cardiac arrest. Clin Neurophysiol. 2017;128:681–8. https://doi.org/10.1016/j.clinph.2017.01.002 .
doi: 10.1016/j.clinph.2017.01.002 pubmed: 28169132
Legriel S, Bruneel F, Sediri H, Hilly J, Abbosh N, Lagarrigue MH, Troche G, Guezennec P, Pico F, Bedos JP. Early EEG monitoring for detecting postanoxic status epilepticus during therapeutic hypothermia: a pilot study. Neurocrit Care. 2009;11:338–44. https://doi.org/10.1007/s12028-009-9246-4 .
doi: 10.1007/s12028-009-9246-4 pubmed: 19588273
Hirsch LJ, Fong MWK, Leitinger M, LaRoche SM, Beniczky S, Abend NS, Lee JW, Wusthoff CJ, Hahn CD, Westover MB, et al. American Clinical Neurophysiology Society’s standardized critical care EEG terminology: 2021 version. J Clin Neurophysiol. 2021;38:1–29. https://doi.org/10.1097/WNP.0000000000000806 .
doi: 10.1097/WNP.0000000000000806 pubmed: 33475321 pmcid: 8135051
Sivaraju A, Gilmore EJ, Wira CR, Stevens A, Rampal N, Moeller JJ, Greer DM, Hirsch LJ, Gaspard N. Prognostication of post-cardiac arrest coma: early clinical and electroencephalographic predictors of outcome. Intensive Care Med. 2015;41:1264–72. https://doi.org/10.1007/s00134-015-3834-x .
doi: 10.1007/s00134-015-3834-x pubmed: 25940963
Gaspard N, Hirsch LJ, LaRoche SM, Hahn CD, Westover MB, Critical Care EEG Monitoring Research Consortium. Interrater agreement for critical care EEG terminology. Epilepsia. 2014;55:1366–73. https://doi.org/10.1111/epi.12653 .
doi: 10.1111/epi.12653 pubmed: 24888711 pmcid: 4879939
Lybeck A, Friberg H, Aneman A, Hassager C, Horn J, Kjærgaard J, Kuiper M, Nielsen N, Ullén S, Wise MP, TTM-Trial Investigators, et al. Prognostic significance of clinical seizures after cardiac arrest and target temperature management. Resuscitation. 2017;114:146–51. https://doi.org/10.1016/j.resuscitation.2017.01.017 .
doi: 10.1016/j.resuscitation.2017.01.017 pubmed: 28163232
Herman ST, Abend NS, Bleck TP, Chapman KE, Drislane FW, Emerson RG, Gerard EE, Hahn CD, Husain AM, Kaplan PW, Critical Care Continuous EEG Task Force of the American Clinical Neurophysiology Society, et al. Consensus statement on continuous EEG in critically ill adults and children, part II: personnel, technical specifications, and clinical practice. J Clin Neurophysiol. 2015;32:96–108. https://doi.org/10.1097/WNP.0000000000000165 .
doi: 10.1097/WNP.0000000000000165 pubmed: 25626777 pmcid: 4434600
Rossetti AO, Schindler K, Sutter R, Rüegg S, Zubler F, Novy J, Oddo M, Warpelin-Decrausaz L, Alvarez V. Continuous vs routine electroencephalogram in critically ill adults with altered consciousness and no recent seizure: a multicenter randomized clinical trial. JAMA Neurol. 2020;77:1225–8. https://doi.org/10.1001/jamaneurol.2020.2264 .
doi: 10.1001/jamaneurol.2020.2264 pubmed: 32716479
Amorim E, Mo SS, Palacios S, Ghassemi MM, Weng WH, Cash SS, Bianchi MT, Westover MB. Cost-effectiveness analysis of multimodal prognostication in cardiac arrest with EEG monitoring. Neurology. 2020;95:e563–75. https://doi.org/10.1212/WNL.0000000000009916 .
doi: 10.1212/WNL.0000000000009916 pubmed: 32661097 pmcid: 7455344
Crepeau AZ, Fugate JE, Mandrekar J, White RD, Wijdicks EF, Rabinstein AA, Britton JW. Value analysis of continuous EEG in patients during therapeutic hypothermia after cardiac arrest. Resuscitation. 2014;85:785–9. https://doi.org/10.1016/j.resuscitation.2014.01.019 .
doi: 10.1016/j.resuscitation.2014.01.019 pubmed: 24561030
Eertmans W, Genbrugge C, Haesen J, Drieskens C, Demeestere J, Vander Laenen M, Boer W, Mesotten D, Dens J, Ernon L, et al. The prognostic value of simplified EEG in out-of-hospital cardiac arrest patients. Neurocrit Care. 2019;30:139–48. https://doi.org/10.1007/s12028-018-0587-8 .
doi: 10.1007/s12028-018-0587-8 pubmed: 30112686
Amorim E, Rittenberger JC, Baldwin ME, Callaway CW, Popescu A, Post Cardiac Arrest Service. Malignant EEG patterns in cardiac arrest patients treated with targeted temperature management who survive to hospital discharge. Resuscitation. 2015;90:127–32. https://doi.org/10.1016/j.resuscitation.2015.03.005 .
doi: 10.1016/j.resuscitation.2015.03.005 pubmed: 25779006 pmcid: 4404214
Seder DB, Sunde K, Rubertsson S, Mooney M, Stammet P, Riker RR, Kern KB, Unger B, Cronberg T, Dziodzio J, International Cardiac Arrest Registry, et al. Neurologic outcomes and postresuscitation care of patients with myoclonus following cardiac arrest. Crit Care Med. 2015;43:965–72. https://doi.org/10.1097/CCM.0000000000000880 .
doi: 10.1097/CCM.0000000000000880 pubmed: 25654176
Faro J, Coppler PJ, Dezfulian C, Baldwin M, Molyneaux BJ, Urban A, Rittenberger JC, Callaway CW, Elmer J, Pittsburgh Post-Cardiac Arrest Service. Differential association of subtypes of epileptiform activity with outcome after cardiac arrest. Resuscitation. 2019;136:138–45. https://doi.org/10.1016/j.resuscitation.2018.11.022 .
doi: 10.1016/j.resuscitation.2018.11.022 pubmed: 30586605
Solanki P, Coppler PJ, Kvaløy JT, Baldwin MA, Callaway CW, Elmer J, Pittsburgh Post-Cardiac Arrest Service. Association of antiepileptic drugs with resolution of epileptiform activity after cardiac arrest. Resuscitation. 2019;142:82–90. https://doi.org/10.1016/j.resuscitation.2019.07.007 .
doi: 10.1016/j.resuscitation.2019.07.007 pubmed: 31325554 pmcid: 7286066
Hofmeijer J, Tjepkema-Cloostermans MC, van Putten MJ. Burst-suppression with identical bursts: a distinct EEG pattern with poor outcome in postanoxic coma. Clin Neurophysiol. 2014;125:947–54. https://doi.org/10.1016/j.clinph.2013.10.017 .
doi: 10.1016/j.clinph.2013.10.017 pubmed: 24286857
Beretta S, Coppo A, Bianchi E, Zanchi C, Carone D, Stabile A, Padovano G, Sulmina E, Grassi A, Bogliun G, et al. Neurologic outcome of postanoxic refractory status epilepticus after aggressive treatment. Neurology. 2018;91:e2153–62. https://doi.org/10.1212/WNL.0000000000006615 .
doi: 10.1212/WNL.0000000000006615 pubmed: 30381366
Beuchat I, Novy J, Rossetti AO. Newer antiepileptic drugs for status epilepticus in adults: What’s the evidence? CNS Drugs. 2018;32:259–67. https://doi.org/10.1007/s40263-018-0509-5 .
doi: 10.1007/s40263-018-0509-5 pubmed: 29582404
Westhall E, Rosén I, Rundgren M, Bro-Jeppesen J, Kjaergaard J, Hassager C, Lindehammar H, Horn J, Ullén S, Nielsen N, et al. Time to epileptiform activity and EEG background recovery are independent predictors after cardiac arrest. Clin Neurophysiol. 2018;129:1660–8. https://doi.org/10.1016/j.clinph.2018.05.016 .
doi: 10.1016/j.clinph.2018.05.016 pubmed: 29933239
Rossetti AO, Oddo M, Liaudet L, Kaplan PW. Predictors of awakening from postanoxic status epilepticus after therapeutic hypothermia. Neurology. 2009;72:744–9. https://doi.org/10.1212/01.wnl.0000343006.60851.62 .
doi: 10.1212/01.wnl.0000343006.60851.62 pubmed: 19237704
Braksick SA, Rabinstein AA, Wijdicks EF, Fugate JE, Hocker S. Post-ischemic myoclonic status following cardiac arrest in young drug users. Neurocrit Care. 2017;26:280–3. https://doi.org/10.1007/s12028-016-0317-z .
doi: 10.1007/s12028-016-0317-z pubmed: 27624215
Lettieri C, Devigili G, Pauletto G, Isola M, Rinaldo S, Budai R, Eleopra R. Post-anoxic status epilepticus: Which variable could modify prognosis? A single-center experience. Minerva Anestesiol. 2017;83:1255–64. https://doi.org/10.23736/S0375-9393.17.11629-9 .
doi: 10.23736/S0375-9393.17.11629-9 pubmed: 28679198
Pugin D, Foreman B, De Marchis GM, Fernandez A, Schmidt JM, Czeisler BM, Mayer SA, Agarwal S, Lesch C, Lantigua H, et al. Is pentobarbital safe and efficacious in the treatment of super-refractory status epilepticus: a cohort study. Crit Care. 2014;18:R103. https://doi.org/10.1186/cc13883 .
doi: 10.1186/cc13883 pubmed: 24886712 pmcid: 4095579
Wijdicks EF, Hijdra A, Young GB, Bassetti CL, Wiebe S, Quality Standards Subcommittee of the American Academy of Neurology. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary­resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67:203–10. https://doi.org/10.1212/01.wnl.0000227183.21314.cd .
doi: 10.1212/01.wnl.0000227183.21314.cd pubmed: 16864809
Reynolds AS, Rohaut B, Holmes MG, Robinson D, Roth W, Velazquez A, Couch CK, Presciutti A, Brodie D, Moitra VK, et al. Early myoclonus following anoxic brain injury. Neurol Clin Pract. 2018;8:249–56. https://doi.org/10.1212/CPJ.0000000000000466 .
doi: 10.1212/CPJ.0000000000000466 pubmed: 30105165 pmcid: 6075972
Elmer J, Rittenberger JC, Faro J, Molyneaux BJ, Popescu A, Callaway CW, Baldwin M, Pittsburgh Post-Cardiac Arrest Service. Clinically distinct electroencephalographic phenotypes of early myoclonus after cardiac arrest. Ann Neurol. 2016;80:175–84. https://doi.org/10.1002/ana.24697 .
doi: 10.1002/ana.24697 pubmed: 27351833 pmcid: 4982787
Dhakar MB, Sivaraju A, Maciel CB, Youn TS, Gaspard N, Greer DM, Hirsch LJ, Gilmore EJ. Electro-clinical characteristics and prognostic significance of post anoxic myoclonus. Resuscitation. 2018;131:114–20. https://doi.org/10.1016/j.resuscitation.2018.06.030 .
doi: 10.1016/j.resuscitation.2018.06.030 pubmed: 29964146
van Zijl JC, Beudel M, Hoeven HJ, Lange F, Tijssen MA, Elting JW. Electroencephalographic findings in posthypoxic myoclonus. J Intensive Care Med. 2016;31:270–5. https://doi.org/10.1177/0885066615571533 .
doi: 10.1177/0885066615571533 pubmed: 25670725
Sakellariou DF, Kostopoulos GK, Richardson MP, Koutroumanidis M. Topography of generalized periodic epileptiform discharges in postanoxic nonconvulsive status epilepticus. Epilepsia Open. 2017;2:472–5. https://doi.org/10.1002/epi4.12073 .
doi: 10.1002/epi4.12073 pubmed: 29588978 pmcid: 5862105
Rodríguez V, Rodden MF, LaRoche SM. Ictal-interictal continuum: a proposed treatment algorithm. Clin Neurophysiol. 2016;127:2056–64. https://doi.org/10.1016/j.clinph.2016.02.003 .
doi: 10.1016/j.clinph.2016.02.003 pubmed: 26971489
Witsch J, Frey HP, Schmidt JM, Velazquez A, Falo CM, Reznik M, Roh D, Agarwal S, Park S, Connolly ES, et al. Electroencephalographic periodic discharges and frequency-dependent brain tissue hypoxia in acute brain injury. JAMA Neurol. 2017;74:301–9. https://doi.org/10.1001/jamaneurol.2016.5325 .
doi: 10.1001/jamaneurol.2016.5325 pubmed: 28097330 pmcid: 5548418
Chamorro C, Borrallo JM, Romera MA, Silva JA, Balandin B. Anesthesia and analgesia protocol during therapeutic hypothermia after cardiac arrest: a systematic review. Anesth Analg. 2010;110:1328–35. https://doi.org/10.1213/ANE.0b013e3181d8cacf .
doi: 10.1213/ANE.0b013e3181d8cacf pubmed: 20418296
Samaniego EA, Mlynash M, Caulfield AF, Eyngorn I, Wijman CA. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care. 2011;15:113–9. https://doi.org/10.1007/s12028-010-9412-8 .
doi: 10.1007/s12028-010-9412-8 pubmed: 20680517 pmcid: 3153345
Crombez T, Hachimi-Idrissi S. The influence of targeted temperature management on the pharmacokinetics of drugs administered during and after cardiac arrest: a systematic review. Acta Clin Belg. 2017;72:116–22. https://doi.org/10.1080/17843286.2017.1291782 .
doi: 10.1080/17843286.2017.1291782 pubmed: 28220713
Bjelland TW, Dale O, Kaisen K, Haugen BO, Lydersen S, Strand K, Klepstad P. Propofol and remifentanil versus midazolam and fentanyl for sedation during therapeutic hypothermia after cardiac arrest: a randomised trial. Intensive Care Med. 2012;38:959–67. https://doi.org/10.1007/s00134-012-2540-1 .
doi: 10.1007/s00134-012-2540-1 pubmed: 22527063
Paul M, Bougouin W, Dumas F, Geri G, Champigneulle B, Guillemet L, Ben Hadj Salem O, Legriel S, Chiche JD, Charpentier J, et al. Comparison of two sedation regimens during targeted temperature management after cardiac arrest. Resuscitation. 2018;128:204–10. https://doi.org/10.1016/j.resuscitation.2018.03.025 .
doi: 10.1016/j.resuscitation.2018.03.025 pubmed: 29555261
Rey A, Rossetti AO, Miroz JP, Eckert P, Oddo M. Late awakening in survivors of postanoxic coma: early neurophysiologic predictors and association with ICU and long-term neurologic recovery. Crit Care Med. 2019;47:85–92. https://doi.org/10.1097/CCM.0000000000003470 .
doi: 10.1097/CCM.0000000000003470 pubmed: 30303838
Moskowitz A, Andersen LW, Rittenberger JC, Swor R, Seethala RR, Kurz MC, Berg KM, Chase M, Cocchi MN, Grossestreuer AV, et al. Continuous neuromuscular blockade following successful resuscitation from cardiac arrest: a randomized trial. J Am Heart Assoc. 2020;9:e017171. https://doi.org/10.1161/JAHA.120.017171 .
doi: 10.1161/JAHA.120.017171 pubmed: 32851921 pmcid: 7660770
Stöckl M, Testori C, Sterz F, Holzer M, Weiser C, Schober A, Nichol G, Frossard M, Herkner H, Kechvar J, et al. Continuous versus intermittent neuromuscular blockade in patients during targeted temperature management after resuscitation from cardiac arrest: a randomized, double blinded, double dummy, clinical trial. Resuscitation. 2017;120:14–9. https://doi.org/10.1016/j.resuscitation.2017.08.238 .
doi: 10.1016/j.resuscitation.2017.08.238 pubmed: 28860012
May TL, Riker RR, Fraser GL, Hirsch KG, Agarwal S, Duarte C, Friberg H, Søreide E, McPherson J, Hand R, et al. Variation in sedation and neuromuscular blockade regimens on outcome after cardiac arrest. Crit Care Med. 2018;46:e975–80. https://doi.org/10.1097/CCM.0000000000003301 .
doi: 10.1097/CCM.0000000000003301 pubmed: 29979225 pmcid: 6138551
Krannich A, Leithner C, Engels M, Nee J, Petzinka V, Schröder T, Jörres A, Kruse J, Storm C. Isoflurane sedation on the ICU in cardiac arrest patients treated with targeted temperature management: an observational propensity-matched study. Crit Care Med. 2017;45:e384–90. https://doi.org/10.1097/CCM.0000000000002185 .
doi: 10.1097/CCM.0000000000002185 pubmed: 27941501
Staudacher DL, Hamilton SK, Duerschmied D, Biever PM, Zehender M, Bode C, Wengenmayer T. Isoflurane or propofol sedation in patients with targeted temperature management after cardiopulmonary resuscitation: a single center study. J Crit Care. 2018;45:40–4. https://doi.org/10.1016/j.jcrc.2018.01.014 .
doi: 10.1016/j.jcrc.2018.01.014 pubmed: 29413721
Oddo M, Crippa IA, Mehta S, Menon D, Payen JF, Taccone FS, Citerio G. Optimizing sedation in patients with acute brain injury. Crit Care. 2016;20:128. https://doi.org/10.1186/s13054-016-1294-5 .
doi: 10.1186/s13054-016-1294-5 pubmed: 27145814 pmcid: 4857238
Elmer J, Torres C, Aufderheide TP, Austin MA, Callaway CW, Golan E, Herren H, Jasti J, Kudenchuk PJ, Scales DC, Resuscitation Outcomes Consortium, et al. Association of early withdrawal of life-sustaining therapy for perceived neurological prognosis with mortality after cardiac arrest. Resuscitation. 2016;102:127–35. https://doi.org/10.1016/j.resuscitation.2016.01.016 .
doi: 10.1016/j.resuscitation.2016.01.016 pubmed: 26836944 pmcid: 4834233
May TL, Ruthazer R, Riker RR, Friberg H, Patel N, Søreide E, Hand R, Stammet P, Dupont A, Hirsch KG, et al. Early withdrawal of life support after resuscitation from cardiac arrest is common and may result in additional deaths. Resuscitation. 2019;139:308–13. https://doi.org/10.1016/j.resuscitation.2019.02.031 .
doi: 10.1016/j.resuscitation.2019.02.031 pubmed: 30836171 pmcid: 6555675
Berg KM, Cheng A, Panchal AR, Topjian AA, Aziz K, Bhanji F, Bigham BL, Hirsch KG, Hoover AV, Kurz MC, on behalf of the Adult Basic and Advanced Life Support, Pediatric Basic and Advanced Life Support, Neonatal Life Support, and Resuscitation Education Science Writing Groups, et al. Part 7: SYSTEMS of care: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142(suppl 2):S580–604. https://doi.org/10.1161/CIR.0000000000000899 .
doi: 10.1161/CIR.0000000000000899 pubmed: 33081524
Yao Y, Johnson NJ, Perman SM, Ramjee V, Grossestreuer AV, Gaieski DF. Myocardial dysfunction after out-of-hospital cardiac arrest: predictors and prognostic implications. Intern Emerg Med. 2018;13:765–72. https://doi.org/10.1007/s11739-017-1756-z .
doi: 10.1007/s11739-017-1756-z pubmed: 28983759
Ameloot K, Genbrugge C, Meex I, Jans F, Boer W, Vander Laenen M, Ferdinande B, Mullens W, Dupont M, Dens J, et al. An observational near-infrared spectroscopy study on cerebral autoregulation in post-cardiac arrest patients: time to drop “one-size-fits-all” hemodynamic targets? Resuscitation. 2015;90:121–6. https://doi.org/10.1016/j.resuscitation.2015.03.001 .
doi: 10.1016/j.resuscitation.2015.03.001 pubmed: 25769511
Jozwiak M, Bougouin W, Geri G, Grimaldi D, Cariou A. Post-resuscitation shock: recent advances in pathophysiology and treatment. Ann Intensive Care. 2020;10:170. https://doi.org/10.1186/s13613-020-00788-z .
doi: 10.1186/s13613-020-00788-z pubmed: 33315152 pmcid: 7734609
Tabi M, Burstein BJ, Ahmed A, Dezfulian C, Kashani KB, Jentzer JC. Shock severity and hospital mortality in out of hospital cardiac arrest patients treated with targeted temperature management. Shock. 2021;55:48–54. https://doi.org/10.1097/SHK.0000000000001600 .
doi: 10.1097/SHK.0000000000001600 pubmed: 32769819
Burstein B, Vallabhajosyula S, Ternus B, Barsness GW, Kashani K, Jentzer JC. The prognostic value of lactate in cardiac intensive care unit patients with cardiac arrest and shock. Shock. 2021;55:613–9. https://doi.org/10.1097/SHK.0000000000001582 .
doi: 10.1097/SHK.0000000000001582 pubmed: 32496423
Porter TR, Shillcutt SK, Adams MS, Desjardins G, Glas KE, Olson JJ, Troughton RW. Guidelines for the use of echocardiography as a monitor for therapeutic intervention in adults: a report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28:40–56. https://doi.org/10.1016/j.echo.2014.09.009 .
doi: 10.1016/j.echo.2014.09.009 pubmed: 25559474
Jentzer JC, Anavekar NS, Mankad SV, White RD, Kashani KB, Barsness GW, Rabinstein AA, Pislaru SV. Changes in left ventricular systolic and diastolic function on serial echocardiography after out-of-hospital cardiac arrest. Resuscitation. 2018;126:1–6. https://doi.org/10.1016/j.resuscitation.2018.01.050 .
doi: 10.1016/j.resuscitation.2018.01.050 pubmed: 29438721
Rab T, Ratanapo S, Kern KB, Basir MB, McDaniel M, Meraj P, King SB 3rd, O’Neill W. Cardiac shock care centers: JACC review topic of the week. J Am Coll Cardiol. 2018;72:1972–80. https://doi.org/10.1016/j.jacc.2018.07.074 .
doi: 10.1016/j.jacc.2018.07.074 pubmed: 30309475
Saxena A, Garan AR, Kapur NK, O’Neill WW, Lindenfeld J, Pinney SP, Uriel N, Burkhoff D, Kern M. Value of hemodynamic monitoring in patients with cardiogenic shock undergoing mechanical circulatory support. Circulation. 2020;141:1184–97. https://doi.org/10.1161/CIRCULATIONAHA.119.043080 .
doi: 10.1161/CIRCULATIONAHA.119.043080 pubmed: 32250695
Patel NJ, Patel N, Bhardwaj B, Golwala H, Kumar V, Atti V, Arora S, Patel S, Hernandez GA, Badheka A, et al. Trends in utilization of mechanical circulatory support in patients hospitalized after out-of-hospital cardiac arrest. Resuscitation. 2018;127:105–13. https://doi.org/10.1016/j.resuscitation.2018.04.007 .
doi: 10.1016/j.resuscitation.2018.04.007 pubmed: 29674141
Yannopoulos D, Bartos J, Raveendran G, Walser E, Connett J, Murray TA, Collins G, Zhang L, Kalra R, Kosmopoulos M, et al. Advanced reperfusion strategies for patients with out-of-hospital cardiac arrest and refractory ventricular fibrillation (ARREST): a phase 2, single centre, open-label, randomised controlled trial. Lancet. 2020;396:1807–16. https://doi.org/10.1016/S0140-6736(20)32338-2 .
doi: 10.1016/S0140-6736(20)32338-2 pubmed: 33197396 pmcid: 7856571
Belohlavek J, Smalcova J, Rob D, Franek O, Smid O, Pokorna M, Horák J, Mrazek V, Kovarnik T, Zemanek D, Prague OHCA Study Group, et al. Effect of intra-arrest transport, extracorporeal cardiopulmonary resuscitation, and immediate invasive assessment and treatment on functional neurologic outcome in refractory out-of-hospital cardiac arrest: a randomized clinical trial. JAMA. 2022;327:737–47. https://doi.org/10.1001/jama.2022.1025 .
doi: 10.1001/jama.2022.1025 pubmed: 35191923 pmcid: 8864504
Khera R, CarlLee S, Blevins A, Schweizer M, Girotra S. Early coronary angiography and survival after out-of-hospital cardiac arrest: a systematic review and meta-analysis. Open Heart. 2018;5:e000809. https://doi.org/10.1136/openhrt-2018-000809 .
doi: 10.1136/openhrt-2018-000809 pubmed: 30402255 pmcid: 6203043
Barbarawi M, Zayed Y, Kheiri B, Barbarawi O, Al-Abdouh A, Dhillon H, Rizk F, Bachuwa G, Alkotob ML. Optimal timing of coronary intervention in patients resuscitated from cardiac arrest without ST-segment elevation myocardial infarction (NSTEMI): a systematic review and meta-analysis. Resuscitation. 2019;144:137–44. https://doi.org/10.1016/j.resuscitation.2019.06.279 .
doi: 10.1016/j.resuscitation.2019.06.279 pubmed: 31580909
Jentzer JC, Scutella M, Pike F, Fitzgibbon J, Krehel NM, Kowalski L, Callaway CW, Rittenberger JC, Reynolds JC, Barsness GW, et al. Early coronary angiography and percutaneous coronary intervention are associated with improved outcomes after out of hospital cardiac arrest. Resuscitation. 2018;123:15–21. https://doi.org/10.1016/j.resuscitation.2017.12.004 .
doi: 10.1016/j.resuscitation.2017.12.004 pubmed: 29223601
Kern KB, Lotun K, Patel N, Mooney MR, Hollenbeck RD, McPherson JA, McMullan PW, Unger B, Hsu CH, Seder DB, INTCAR-Cardiology Registry. Outcomes of comatose cardiac arrest survivors with and without ST-segment elevation myocardial infarction: importance of coronary angiography. JACC Cardiovasc Interv. 2015;8:1031–40. https://doi.org/10.1016/j.jcin.2015.02.021 .
doi: 10.1016/j.jcin.2015.02.021 pubmed: 26117462
O’Connor RE, Al Ali AS, Brady WJ, Ghaemmaghami CA, Menon V, Welsford M, Shuster M. Part 9: acute coronary syndromes: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(suppl 2):S483–500. https://doi.org/10.1161/CIR.0000000000000263 .
doi: 10.1161/CIR.0000000000000263 pubmed: 26472997
Dumas F, Cariou A, Manzo-Silberman S, Grimaldi D, Vivien B, Rosencher J, Empana JP, Carli P, Mira JP, Jouven X, et al. Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry. Circ Cardiovasc Interv. 2010;3:200–7. https://doi.org/10.1161/CIRCINTERVENTIONS.109.913665 .
doi: 10.1161/CIRCINTERVENTIONS.109.913665 pubmed: 20484098
Mooney MR, Unger BT, Boland LL, Burke MN, Kebed KY, Graham KJ, Henry TD, Katsiyiannis WT, Satterlee PA, Sendelbach S, et al. Therapeutic hypothermia after out-of-hospital cardiac arrest: evaluation of a regional system to increase access to cooling. Circulation. 2011;124:206–14. https://doi.org/10.1161/CIRCULATIONAHA.110.986257 .
doi: 10.1161/CIRCULATIONAHA.110.986257 pubmed: 21747066
Cronier P, Vignon P, Bouferrache K, Aegerter P, Charron C, Templier F, Castro S, El Mahmoud R, Lory C, Pichon N, et al. Impact of routine percutaneous coronary intervention after out-of-hospital cardiac arrest due to ventricular fibrillation. Crit Care. 2011;15:R122. https://doi.org/10.1186/cc10227 .
doi: 10.1186/cc10227 pubmed: 21569361 pmcid: 3218980
Aurore A, Jabre P, Liot P, Margenet A, Lecarpentier E, Combes X. Predictive factors for positive coronary angiography in out-of-hospital cardiac arrest patients. Eur J Emerg Med. 2011;18:73–6. https://doi.org/10.1097/MEJ.0b013e32833d469a .
doi: 10.1097/MEJ.0b013e32833d469a pubmed: 20664351
Strote JA, Maynard C, Olsufka M, Nichol G, Copass MK, Cobb LA, Kim F. Comparison of role of early (less than six hours) to later (more than six hours) or no cardiac catheterization after resuscitation from out-of-hospital cardiac arrest. Am J Cardiol. 2012;109:451–4. https://doi.org/10.1016/j.amjcard.2011.09.036 .
doi: 10.1016/j.amjcard.2011.09.036 pubmed: 22100026
Anyfantakis ZA, Baron G, Aubry P, Himbert D, Feldman LJ, Juliard JM, Ricard-Hibon A, Burnod A, Cokkinos DV, Steg PG. Acute coronary angiographic findings in survivors of out-of-hospital cardiac arrest. Am Heart J. 2009;157:312–8. https://doi.org/10.1016/j.ahj.2008.09.016 .
doi: 10.1016/j.ahj.2008.09.016 pubmed: 19185639
Radsel P, Knafelj R, Kocjancic S, Noc M. Angiographic characteristics of coronary disease and postresuscitation electrocardiograms in patients with aborted cardiac arrest outside a hospital. Am J Cardiol. 2011;108:634–8. https://doi.org/10.1016/j.amjcard.2011.04.008 .
doi: 10.1016/j.amjcard.2011.04.008 pubmed: 21676367
Dumas F, Bougouin W, Geri G, Lamhaut L, Rosencher J, Pène F, Chiche JD, Varenne O, Carli P, Jouven X, et al. Emergency percutaneous coronary intervention in post-cardiac arrest patients without ST-segment elevation pattern: insights from the PROCAT II Registry. JACC Cardiovasc Interv. 2016;9:1011–8. https://doi.org/10.1016/j.jcin.2016.02.001 .
doi: 10.1016/j.jcin.2016.02.001 pubmed: 27131438
Patterson T, Perkins GD, Joseph J, Wilson K, Van Dyck L, Robertson S, Nguyen H, McConkey H, Whitbread M, Fothergill R, et al. A randomised tRial of expedited transfer to a cardiac arrest centre for non-ST elevation ventricular fibrillation out-of-hospital cardiac arrest: the ARREST pilot randomised trial. Resuscitation. 2017;115:185–91. https://doi.org/10.1016/j.resuscitation.2017.01.020 .
doi: 10.1016/j.resuscitation.2017.01.020 pubmed: 28174052
Lemkes JS, Janssens GN, van der Hoeven NW, Jewbali LSD, Dubois EA, Meuwissen M, Rijpstra TA, Bosker HA, Blans MJ, Bleeker GB, et al. Coronary angiography after cardiac arrest without ST-segment elevation. N Engl J Med. 2019;380:1397–407. https://doi.org/10.1056/NEJMoa1816897 .
doi: 10.1056/NEJMoa1816897 pubmed: 30883057
Elfwén L, Lagedal R, Nordberg P, James S, Oldgren J, Böhm F, Lundgren P, Rylander C, van der Linden J, Hollenberg J, et al. Direct or subacute coronary angiography in out-of-hospital cardiac arrest (DISCO): an initial pilot-study of a randomized clinical trial. Resuscitation. 2019;139:253–61. https://doi.org/10.1016/j.resuscitation.2019.04.027 .
doi: 10.1016/j.resuscitation.2019.04.027 pubmed: 31028826
Kern KB, Radsel P, Jentzer JC, Seder DB, Lee KS, Lotun K, Janardhanan R, Stub D, Hsu CH, Noc M. Randomized pilot clinical trial of early coronary angiography versus no early coronary angiography after cardiac arrest without ST-segment elevation: the PEARL study. Circulation. 2020;142:2002–12. https://doi.org/10.1161/CIRCULATIONAHA.120.049569 .
doi: 10.1161/CIRCULATIONAHA.120.049569 pubmed: 32985249
Desch S, Freund A, Akin I, Behnes M, Preusch MR, Zelniker TA, Skurk C, Landmesser U, Graf T, Eitel I, TOMAHAWK Investigators, et al. Angiography after out-of-hospital cardiac arrest without ST-segment elevation. N Engl J Med. 2021;385:2544–53. https://doi.org/10.1056/NEJMoa2101909 .
doi: 10.1056/NEJMoa2101909 pubmed: 34459570
Hauw-Berlemont C, Lamhaut L, Diehl JL, Andreotti C, Varenne O, Leroux P, Lascarrou JB, Guerin P, Loeb T, Roupie E, EMERGE Investigators, et al. Emergency vs delayed coronary angiogram in survivors of out-of-hospital cardiac arrest: results of the randomized, multicentric EMERGE trial. JAMA Cardiol. 2022;7:700–7. https://doi.org/10.1001/jamacardio.2022.1416 .
doi: 10.1001/jamacardio.2022.1416 pubmed: 35675081 pmcid: 9178496
Wyckoff MH, Singletary EM, Soar J, Olasveengen TM, Greif R, Liley HG, Zideman D, Bhanji F, Andersen LW, Avis SR, et al. 2021 International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations: summary from the basic life support; advanced life support; neonatal life support; education, implementation, and teams; first aid task forces; and the COVID-19 Working Group. Circulation. 2022;145:e645–721. https://doi.org/10.1161/CIR.0000000000001017 .
doi: 10.1161/CIR.0000000000001017 pubmed: 34813356
Shih JA, Robertson HK, Issa MS, Grossestreuer AV, Donnino MW, Berg KM, Moskowitz A. Acute respiratory distress syndrome after in-hospital cardiac arrest. Resuscitation. 2022;177:78–84. https://doi.org/10.1016/j.resuscitation.2022.05.006 .
doi: 10.1016/j.resuscitation.2022.05.006 pubmed: 35580706 pmcid: 9320405
Johnson NJ, Caldwell E, Carlbom DJ, Gaieski DF, Prekker ME, Rea TD, Sayre M, Hough CL. The acute respiratory distress syndrome after out-of-hospital cardiac arrest: Incidence, risk factors, and outcomes. Resuscitation. 2019;135:37–44. https://doi.org/10.1016/j.resuscitation.2019.01.009 .
doi: 10.1016/j.resuscitation.2019.01.009 pubmed: 30654012
Beitler JR, Ghafouri TB, Jinadasa SP, Mueller A, Hsu L, Anderson RJ, Joshua J, Tyagi S, Malhotra A, Sell RE, et al. Favorable neurocognitive outcome with low tidal volume ventilation after cardiac arrest. Am J Respir Crit Care Med. 2017;195:1198–206. https://doi.org/10.1164/rccm.201609-1771OC .
doi: 10.1164/rccm.201609-1771OC pubmed: 28267376 pmcid: 5439016
Moskowitz A, Grossestreuer AV, Berg KM, Patel PV, Ganley S, Casasola Medrano M, Cocchi MN, Donnino MW, Center for Resuscitation Science. The association between tidal volume and neurological outcome following in-hospital cardiac arrest. Resuscitation. 2018;124:106–11. https://doi.org/10.1016/j.resuscitation.2017.12.031 .
doi: 10.1016/j.resuscitation.2017.12.031 pubmed: 29292026
Imberti R, Bellinzona G, Riccardi F, Pagani M, Langer M. Cerebral perfusion pressure and cerebral tissue oxygen tension in a patient during cardiopulmonary resuscitation. Intensive Care Med. 2003;29:1016–9. https://doi.org/10.1007/s00134-003-1719-x .
doi: 10.1007/s00134-003-1719-x pubmed: 12664224
Valbuena VSM, Barbaro RP, Claar D, Valley TS, Dickson RP, Gay SE, Sjoding MW, Iwashyna TJ. Racial bias in pulse oximetry measurement among patients about to undergo extracorporeal membrane oxygenation in 2019–2020: a retrospective cohort study. Chest. 2022;161:971–8. https://doi.org/10.1016/j.chest.2021.09.025 .
doi: 10.1016/j.chest.2021.09.025 pubmed: 34592317
Henry NR, Hanson AC, Schulte PJ, Warner NS, Manento MN, Weister TJ, Warner MA. Disparities in hypoxemia detection by pulse oximetry across self-identified racial groups and associations with clinical outcomes. Crit Care Med. 2022;50:204–11. https://doi.org/10.1097/CCM.0000000000005394 .
doi: 10.1097/CCM.0000000000005394 pubmed: 35100193 pmcid: 9070439
Jakkula P, Reinikainen M, Hästbacka J, Loisa P, Tiainen M, Pettilä V, Toppila J, Lähde M, Bäcklund M, Okkonen M, COMACARE Study Group, et al. Targeting two different levels of both arterial carbon dioxide and arterial oxygen after cardiac arrest and resuscitation: a randomised pilot trial. Intensive Care Med. 2018;44:2112–21. https://doi.org/10.1007/s00134-018-5453-9 .
doi: 10.1007/s00134-018-5453-9 pubmed: 30430209 pmcid: 6280824
Mackle D, Bellomo R, Bailey M, Beasley R, Deane A, Eastwood G, Finfer S, Freebairn R, King V, Linke N, ICU-ROX Investigators and the Australian and New Zealand Intensive Care Society Clinical Trials Group, et al. Conservative oxygen therapy during mechanical ventilation in the ICU. N Engl J Med. 2020;382:989–98. https://doi.org/10.1056/NEJMoa1903297 .
doi: 10.1056/NEJMoa1903297 pubmed: 31613432
Schmidt H, Kjaergaard J, Hassager C, Mølstrøm S, Grand J, Borregaard B, Roelsgaard Obling LE, Venø S, Sarkisian L, Mamaev D, et al. Oxygen targets in comatose survivors of cardiac arrest. N Engl J Med. 2022;387:1467–76. https://doi.org/10.1056/NEJMoa2208686 .
doi: 10.1056/NEJMoa2208686 pubmed: 36027567
Young P, Mackle D, Bellomo R, Bailey M, Beasley R, Deane A, Eastwood G, Finfer S, Freebairn R, King V, ICU-ROX Investigators and the Australian and New Zealand Intensive Care Society Clinical Trials Group, et al. Conservative oxygen therapy for mechanically ventilated adults with suspected hypoxic ischaemic encephalopathy. Intensive Care Med. 2020;46:2411–22. https://doi.org/10.1007/s00134-020-06196-y .
doi: 10.1007/s00134-020-06196-y pubmed: 32809136 pmcid: 7431900
Elmer J, Scutella M, Pullalarevu R, Wang B, Vaghasia N, Trzeciak S, Rosario-Rivera BL, Guyette FX, Rittenberger JC, Dezfulian C, Pittsburgh Post-Cardiac Arrest Service (PCAS). The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database. Intensive Care Med. 2015;41:49–57. https://doi.org/10.1007/s00134-014-3555-6 .
doi: 10.1007/s00134-014-3555-6 pubmed: 25472570
Roberts BW, Kilgannon JH, Hunter BR, Puskarich MA, Pierce L, Donnino M, Leary M, Kline JA, Jones AE, Shapiro NI, et al. Association between early hyperoxia exposure after resuscitation from cardiac arrest and neurological disability: prospective multicenter protocol-directed cohort study. Circulation. 2018;137:2114–24. https://doi.org/10.1161/CIRCULATIONAHA.117.032054 .
doi: 10.1161/CIRCULATIONAHA.117.032054 pubmed: 29437118 pmcid: 6370332
Wang HE, Prince DK, Drennan IR, Grunau B, Carlbom DJ, Johnson N, Hansen M, Elmer J, Christenson J, Kudenchuk P, Resuscitation Outcomes Consortium (ROC) Investigators, et al. Post-resuscitation arterial oxygen and carbon dioxide and outcomes after out-of-hospital cardiac arrest. Resuscitation. 2017;120:113–8. https://doi.org/10.1016/j.resuscitation.2017.08.244 .
doi: 10.1016/j.resuscitation.2017.08.244 pubmed: 28870720 pmcid: 5660655
Humaloja J, Litonius E, Efendijev I, Folger D, Raj R, Pekkarinen PT, Skrifvars MB. Early hyperoxemia is not associated with cardiac arrest outcome. Resuscitation. 2019;140:185–93. https://doi.org/10.1016/j.resuscitation.2019.04.035 .
doi: 10.1016/j.resuscitation.2019.04.035 pubmed: 31039393
Vaahersalo J, Bendel S, Reinikainen M, Kurola J, Tiainen M, Raj R, Pettilä V, Varpula T, Skrifvars MB, FINNRESUSCI Study Group. Arterial blood gas tensions after resuscitation from out-of-hospital cardiac arrest: associations with long-term neurologic outcome. Crit Care Med. 2014;42:1463–70. https://doi.org/10.1097/CCM.0000000000000228 .
doi: 10.1097/CCM.0000000000000228 pubmed: 24557423
von Auenmueller KI, Christ M, Sasko BM, Trappe HJ. The value of arterial blood gas parameters for prediction of mortality in survivors of out-of-hospital cardiac arrest. J Emerg Trauma Shock. 2017;10:134–9. https://doi.org/10.4103/JETS.JETS_146_16 .
doi: 10.4103/JETS.JETS_146_16
Bouzat P, Suys T, Sala N, Oddo M. Effect of moderate hyperventilation and induced hypertension on cerebral tissue oxygenation after cardiac arrest and therapeutic hypothermia. Resuscitation. 2013;84:1540–5. https://doi.org/10.1016/j.resuscitation.2013.05.014 .
doi: 10.1016/j.resuscitation.2013.05.014 pubmed: 23727361
Buunk G, van der Hoeven JG, Meinders AE. Cerebrovascular reactivity in comatose patients resuscitated from a cardiac arrest. Stroke. 1997;28:1569–73. https://doi.org/10.1161/01.str.28.8.1569 .
doi: 10.1161/01.str.28.8.1569 pubmed: 9259750
Eastwood GM, Schneider AG, Suzuki S, Peck L, Young H, Tanaka A, Mårtensson J, Warrillow S, McGuinness S, Parke R, et al. Targeted therapeutic mild hypercapnia after cardiac arrest: a phase II multi-centre randomised controlled trial (the CCC trial). Resuscitation. 2016;104:83–90. https://doi.org/10.1016/j.resuscitation.2016.03.023 .
doi: 10.1016/j.resuscitation.2016.03.023 pubmed: 27060535
Hope Kilgannon J, Hunter BR, Puskarich MA, Shea L, Fuller BM, Jones C, Donnino M, Kline JA, Jones AE, Shapiro NI, et al. Partial pressure of arterial carbon dioxide after resuscitation from cardiac arrest and neurological outcome: a prospective multi-center protocol-directed cohort study. Resuscitation. 2019;135:212–20. https://doi.org/10.1016/j.resuscitation.2018.11.015 .
doi: 10.1016/j.resuscitation.2018.11.015 pubmed: 30452939
Ebner F, Harmon MBA, Aneman A, Cronberg T, Friberg H, Hassager C, Juffermans N, Kjaergaard J, Kuiper M, Mattsson N, et al. Carbon dioxide dynamics in relation to neurological outcome in resuscitated out-of-hospital cardiac arrest patients: an exploratory Target Temperature Management Trial substudy. Crit Care. 2018;22:196. https://doi.org/10.1186/s13054-018-2119-5 .
doi: 10.1186/s13054-018-2119-5 pubmed: 30119692 pmcid: 6098627
Roberts BW, Kilgannon JH, Chansky ME, Mittal N, Wooden J, Trzeciak S. Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome. Circulation. 2013;127:2107–13. https://doi.org/10.1161/CIRCULATIONAHA.112.000168 .
doi: 10.1161/CIRCULATIONAHA.112.000168 pubmed: 23613256
Ameloot K, Genbrugge C, Meex I, Janssens S, Boer W, Mullens W, Ferdinande B, Dupont M, Dens J, De Deyne C. Low hemoglobin levels are associated with lower cerebral saturations and poor outcome after cardiac arrest. Resuscitation. 2015;96:280–6. https://doi.org/10.1016/j.resuscitation.2015.08.015 .
doi: 10.1016/j.resuscitation.2015.08.015 pubmed: 26325099
Albaeni A, Eid SM, Akinyele B, Kurup LN, Vaidya D, Chandra-Strobos N. The association between post resuscitation hemoglobin level and survival with good neurological outcome following out of hospital cardiac arrest. Resuscitation. 2016;99:7–12. https://doi.org/10.1016/j.resuscitation.2015.11.015 .
doi: 10.1016/j.resuscitation.2015.11.015 pubmed: 26687807
Kim D, Kim SH, Park KN, Oh SH, Kim YM, Youn CS. Hemoglobin concentration is associated with neurologic outcome after cardiac arrest in patients treated with targeted temperature management. Clin Exp Emerg Med. 2018;5:150–5. https://doi.org/10.15441/ceem.17.250 .
doi: 10.15441/ceem.17.250 pubmed: 29706055 pmcid: 6166041
Johnson NJ, Rosselot B, Perman SM, Dodampahala K, Goyal M, Gaieski DF, Grossestreuer AV. The association between hemoglobin concentration and neurologic outcome after cardiac arrest. J Crit Care. 2016;36:218–22. https://doi.org/10.1016/j.jcrc.2016.07.012 .
doi: 10.1016/j.jcrc.2016.07.012 pubmed: 27546775 pmcid: 5967869
Wormsbecker A, Sekhon MS, Griesdale DE, Wiskar K, Rush B. The association between anemia and neurological outcome in hypoxic ischemic brain injury after cardiac arrest. Resuscitation. 2017;112:11–6. https://doi.org/10.1016/j.resuscitation.2016.12.010 .
doi: 10.1016/j.resuscitation.2016.12.010 pubmed: 28007641
Marik PE, Corwin HL. Efficacy of red blood cell transfusion in the critically ill: a systematic review of the literature. Crit Care Med. 2008;36:2667–74. https://doi.org/10.1097/CCM.0b013e3181844677 .
doi: 10.1097/CCM.0b013e3181844677 pubmed: 18679112
Sadaka F, Trottier S, Tannehill D, Donnelly PL, Griffin MT, Bunaye Z, O’Brien J, Korobey M, Lakshmanan R. Transfusion of red blood cells is associated with improved central venous oxygen saturation but not mortality in septic shock patients. J Clin Med Res. 2014;6:422–8. https://doi.org/10.14740/jocmr1843w .
doi: 10.14740/jocmr1843w pubmed: 25247015 pmcid: 4169083
Carson JL, Guyatt G, Heddle NM, Grossman BJ, Cohn CS, Fung MK, Gernsheimer T, Holcomb JB, Kaplan LJ, Katz LM, et al. Clinical practice guidelines from the AABB: red blood cell transfusion thresholds and storage. JAMA. 2016;316:2025–35. https://doi.org/10.1001/jama.2016.9185 .
doi: 10.1001/jama.2016.9185 pubmed: 27732721
Ejaz A, Ahmed MM, Tasleem A, Rafay Khan Niazi M, Ahsraf MF, Ahmad I, Zakir A, Raza A. Thromboprophylaxis in intensive care unit patients: a literature review. Cureus. 2018;10:e3341. https://doi.org/10.7759/cureus.3341 .
doi: 10.7759/cureus.3341 pubmed: 30473974 pmcid: 6248708
Van Poucke S, Stevens K, Marcus AE, Lancé M. Hypothermia: effects on platelet function and hemostasis. Thromb J. 2014;12:31. https://doi.org/10.1186/s12959-014-0031-z .
doi: 10.1186/s12959-014-0031-z pubmed: 25506269 pmcid: 4265340
Maze R, Le May MR, Froeschl M, Hazra SK, Wells PS, Osborne C, Labinaz M, Hibbert B, So DY, CArdiovascular Percutaneous Intervention TriAL (CAPITAL) Investigators. Endovascular cooling catheter related thrombosis in patients undergoing therapeutic hypothermia for out of hospital cardiac arrest. Resuscitation. 2014;85:1354–8. https://doi.org/10.1016/j.resuscitation.2014.05.029 .
doi: 10.1016/j.resuscitation.2014.05.029 pubmed: 24978111
Andremont O, du Cheyron D, Terzi N, Daubin C, Seguin A, Valette X, Lecoq FA, Parienti JJ, Sauneuf B. Endovascular cooling versus standard femoral catheters and intravascular complications: a propensity-matched cohort study. Resuscitation. 2018;124:1–6. https://doi.org/10.1016/j.resuscitation.2017.12.014 .
doi: 10.1016/j.resuscitation.2017.12.014 pubmed: 29242058
Ho KM, Chavan S, Pilcher D. Omission of early thromboprophylaxis and mortality in critically ill patients: a multicenter registry study. Chest. 2011;140:1436–46. https://doi.org/10.1378/chest.11-1444 .
doi: 10.1378/chest.11-1444 pubmed: 21940768
Duranteau J, Taccone FS, Verhamme P, Ageno W, ESA VTE Guidelines Task Force. European guidelines on perioperative venous thromboembolism prophylaxis: intensive care. Eur J Anaesthesiol. 2018;35:142–6. https://doi.org/10.1097/EJA.0000000000000707 .
doi: 10.1097/EJA.0000000000000707 pubmed: 29112545
Kearon C, Akl EA, Comerota AJ, Prandoni P, Bounameaux H, Goldhaber SZ, Nelson ME, Wells PS, Gould MK, Dentali F, et al. Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice guidelines. Chest. 2012;141:e419S-e496S. https://doi.org/10.1378/chest.11-2301 .
doi: 10.1378/chest.11-2301 pubmed: 22315268 pmcid: 3278049
Fernando SM, Tran A, Cheng W, Sadeghirad B, Arabi YM, Cook DJ, Møller MH, Mehta S, Fowler RA, Burns KEA, et al. VTE prophylaxis in critically ill adults: a systematic review and network meta-analysis. Chest. 2022;161:418–28. https://doi.org/10.1016/j.chest.2021.08.050 .
doi: 10.1016/j.chest.2021.08.050 pubmed: 34419428
Barr J, Hecht M, Flavin KE, Khorana A, Gould MK. Outcomes in critically ill patients before and after the implementation of an evidence-based nutritional management protocol. Chest. 2004;125:1446–57. https://doi.org/10.1378/chest.125.4.1446 .
doi: 10.1378/chest.125.4.1446 pubmed: 15078758
De Jonghe B, Appere-De-Vechi C, Fournier M, Tran B, Merrer J, Melchior JC, Outin H. A prospective survey of nutritional support practices in intensive care unit patients: What is prescribed? What is delivered? Crit Care Med. 2001;29:8–12. https://doi.org/10.1097/00003246-200101000-00002 .
doi: 10.1097/00003246-200101000-00002 pubmed: 11176150
Weijs PJ, Looijaard WG, Dekker IM, Stapel SN, Girbes AR, Oudemans-van Straaten HM, Beishuizen A. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care. 2014;18:R12. https://doi.org/10.1186/cc13189 .
doi: 10.1186/cc13189 pubmed: 24410863 pmcid: 4028783
Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, Hiesmayr M, Mayer K, Montejo JC, Pichard C, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38:48–79. https://doi.org/10.1016/j.clnu.2018.08.037 .
doi: 10.1016/j.clnu.2018.08.037 pubmed: 30348463
McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, McCarthy MS, Davanos E, Rice TW, Cresci GA, Society of Critical Care Medicine, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40:159–211. https://doi.org/10.1177/0148607115621863 .
doi: 10.1177/0148607115621863 pubmed: 26773077
Grimaldi D, Guivarch E, Neveux N, Fichet J, Pène F, Marx JS, Chiche JD, Cynober L, Mira JP, Cariou A. Markers of intestinal injury are associated with endotoxemia in successfully resuscitated patients. Resuscitation. 2013;84:60–5. https://doi.org/10.1016/j.resuscitation.2012.06.010 .
doi: 10.1016/j.resuscitation.2012.06.010 pubmed: 22743354
Grimaldi D, Sauneuf B, Guivarch E, Ricome S, Geri G, Charpentier J, Zuber B, Dumas F, Spaulding C, Mira JP, et al. High level of endotoxemia following out-of-hospital cardiac arrest is associated with severity and duration of postcardiac arrest shock. Crit Care Med. 2015;43:2597–604. https://doi.org/10.1097/CCM.0000000000001303 .
doi: 10.1097/CCM.0000000000001303 pubmed: 26427593
Harvey SE, Parrott F, Harrison DA, Bear DE, Segaran E, Beale R, Bellingan G, Leonard R, Mythen MG, Rowan KM, CALORIES Trial Investigators. Trial of the route of early nutritional support in critically ill adults. N Engl J Med. 2014;371:1673–84. https://doi.org/10.1056/NEJMoa1409860 .
doi: 10.1056/NEJMoa1409860 pubmed: 25271389
Williams ML, Nolan JP. Is enteral feeding tolerated during therapeutic hypothermia? Resuscitation. 2014;85:1469–72. https://doi.org/10.1016/j.resuscitation.2014.08.018 .
doi: 10.1016/j.resuscitation.2014.08.018 pubmed: 25193798
Martin M, Reignier J, Le Thuaut A, Lacherade JC, Martin-Lefèvre L, Fiancette M, Vinatier I, Lebert C, Bachoumas K, Yehia A, et al. Nutrition during targeted temperature management after cardiac arrest: observational study of neurological outcomes and nutrition tolerance. JPEN J Parenter Enteral Nutr. 2020;44:138–45. https://doi.org/10.1002/jpen.1596 .
doi: 10.1002/jpen.1596 pubmed: 31006879
Joo WJ, Ide K, Kawasaki Y, Takeda C, Seki T, Usui T, Kawakami K. Effectiveness and safety of early enteral nutrition for patients who received targeted temperature management after out-of-hospital cardiac arrest. Resuscitation. 2019;135:191–6. https://doi.org/10.1016/j.resuscitation.2019.01.007 .
doi: 10.1016/j.resuscitation.2019.01.007 pubmed: 30648550
Reignier J, Boisramé-Helms J, Brisard L, Lascarrou JB, Ait Hssain A, Anguel N, Argaud L, Asehnoune K, Asfar P, Bellec F, NUTRIREA-2 Trial Investigators, et al. Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet. 2018;391:133–43. https://doi.org/10.1016/S0140-6736(17)32146-3 .
doi: 10.1016/S0140-6736(17)32146-3 pubmed: 29128300
Stollman N, Metz DC. Pathophysiology and prophylaxis of stress ulcer in intensive care unit patients. J Crit Care. 2005;20:35–45. https://doi.org/10.1016/j.jcrc.2004.10.003 .
doi: 10.1016/j.jcrc.2004.10.003 pubmed: 16015515
Mohebbi L, Hesch K. Stress ulcer prophylaxis in the intensive care unit. Proc (Bayl Univ Med Cent). 2009;22:373–6. https://doi.org/10.1080/08998280.2009.11928562 .
doi: 10.1080/08998280.2009.11928562 pubmed: 21240306
Granholm A, Zeng L, Dionne JC, Perner A, Marker S, Krag M, MacLaren R, Ye Z, Møller MH, Alhazzani W, GUIDE Group. Predictors of gastrointestinal bleeding in adult ICU patients: a systematic review and meta-analysis. Intensive Care Med. 2019;45:1347–59. https://doi.org/10.1007/s00134-019-05751-6 .
doi: 10.1007/s00134-019-05751-6 pubmed: 31489445
Marik PE, Vasu T, Hirani A, Pachinburavan M. Stress ulcer prophylaxis in the new millennium: a systematic review and meta-analysis. Crit Care Med. 2010;38:2222–8. https://doi.org/10.1097/CCM.0b013e3181f17adf .
doi: 10.1097/CCM.0b013e3181f17adf pubmed: 20711074
Tsai MS, Chiang WC, Lee CC, Hsieh CC, Ko PC, Hsu CY, Su CP, Chen SY, Chang WT, Yuan A, et al. Infections in the survivors of out-of-hospital cardiac arrest in the first 7 days. Intensive Care Med. 2005;31:621–6. https://doi.org/10.1007/s00134-005-2612-6 .
doi: 10.1007/s00134-005-2612-6 pubmed: 15803297
Mongardon N, Perbet S, Lemiale V, Dumas F, Poupet H, Charpentier J, Péne F, Chiche JD, Mira JP, Cariou A. Infectious complications in out-of-hospital cardiac arrest patients in the therapeutic hypothermia era. Crit Care Med. 2011;39:1359–64. https://doi.org/10.1097/CCM.0b013e3182120b56 .
doi: 10.1097/CCM.0b013e3182120b56 pubmed: 21336107
Couper K, Laloo R, Field R, Perkins GD, Thomas M, Yeung J. Prophylactic antibiotic use following cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2019;141:166–73. https://doi.org/10.1016/j.resuscitation.2019.04.047 .
doi: 10.1016/j.resuscitation.2019.04.047 pubmed: 31085216
François B, Cariou A, Clere-Jehl R, Dequin PF, Renon-Carron F, Daix T, Guitton C, Deye N, Legriel S, Plantefève G, CRICS-TRIGGERSEP Network and the ANTHARTIC Study Group, et al. Prevention of early ventilator-associated pneumonia after cardiac arrest. N Engl J Med. 2019;381:1831–42. https://doi.org/10.1056/NEJMoa1812379 .
doi: 10.1056/NEJMoa1812379 pubmed: 31693806
Dell’anna AM, Bini Viotti J, Beumier M, Orbegozo-Cortes D, Donadello K, Scolletta S, Vincent JL, Taccone FS. C-reactive protein levels after cardiac arrest in patients treated with therapeutic hypothermia. Resuscitation. 2014;85:932–8. https://doi.org/10.1016/j.resuscitation.2014.04.003 .
doi: 10.1016/j.resuscitation.2014.04.003 pubmed: 24746786
Annborn M, Dankiewicz J, Erlinge D, Hertel S, Rundgren M, Smith JG, Struck J, Friberg H. Procalcitonin after cardiac arrest: an indicator of severity of illness, ischemia-reperfusion injury and outcome. Resuscitation. 2013;84:782–7. https://doi.org/10.1016/j.resuscitation.2013.01.004 .
doi: 10.1016/j.resuscitation.2013.01.004 pubmed: 23313427
Engel H, Ben Hamouda N, Portmann K, Delodder F, Suys T, Feihl F, Eggimann P, Rossetti AO, Oddo M. Serum procalcitonin as a marker of post-cardiac arrest syndrome and long-term neurological recovery, but not of early-onset infections, in comatose post-anoxic patients treated with therapeutic hypothermia. Resuscitation. 2013;84:776–81. https://doi.org/10.1016/j.resuscitation.2013.01.029 .
doi: 10.1016/j.resuscitation.2013.01.029 pubmed: 23380286
Bro-Jeppesen J, Kjaergaard J, Wanscher M, Nielsen N, Friberg H, Bjerre M, Hassager C. The inflammatory response after out-of-hospital cardiac arrest is not modified by targeted temperature management at 33°C or 36°C. Resuscitation. 2014;85:1480–7. https://doi.org/10.1016/j.resuscitation.2014.08.007 .
doi: 10.1016/j.resuscitation.2014.08.007 pubmed: 25150183
Pabst D, Römer S, Samol A, Kümpers P, Waltenberger J, Lebiedz P. Predictors and outcome of early-onset pneumonia after out-of-hospital cardiac arrest. Respir Care. 2013;58:1514–20. https://doi.org/10.4187/respcare.02307 .
doi: 10.4187/respcare.02307 pubmed: 23466424
Huang HB, Peng JM, Weng L, Wang CY, Jiang W, Du B. Procalcitonin-guided antibiotic therapy in intensive care unit patients: a systematic review and meta-analysis. Ann Intensive Care. 2017;7:114. https://doi.org/10.1186/s13613-017-0338-6 .
doi: 10.1186/s13613-017-0338-6 pubmed: 29168046 pmcid: 5700008
Pepper DJ, Sun J, Rhee C, Welsh J, Powers JH 3rd, Danner RL, Kadri SS. Procalcitonin-guided antibiotic discontinuation and mortality in critically ill adults: a systematic review and meta-analysis. Chest. 2019;155:1109–18. https://doi.org/10.1016/j.chest.2018.12.029 .
doi: 10.1016/j.chest.2018.12.029 pubmed: 30772386 pmcid: 6607427
Cecconi M, Hernandez G, Dunser M, Antonelli M, Baker T, Bakker J, Duranteau J, Einav S, Groeneveld ABJ, Harris T, et al. Fluid administration for acute circulatory dysfunction using basic monitoring: narrative review and expert panel recommendations from an ESICM task force. Intensive Care Med. 2019;45:21–32. https://doi.org/10.1007/s00134-018-5415-2 .
doi: 10.1007/s00134-018-5415-2 pubmed: 30456467
Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, Jahan R, Harvey SE, Bell D, Bion JF, ProMISe Trial Investigators, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372:1301–11. https://doi.org/10.1056/NEJMoa1500896 .
doi: 10.1056/NEJMoa1500896 pubmed: 25776532
Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, Higgins AM, Holdgate A, Howe BD, Webb SA, ARISE Investigators, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506. https://doi.org/10.1056/NEJMoa1404380 .
doi: 10.1056/NEJMoa1404380 pubmed: 25272316
Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Terndrup T, Wang HE, Hou PC, LoVecchio F, ProCESS Investigators, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93. https://doi.org/10.1056/NEJMoa1401602 .
doi: 10.1056/NEJMoa1401602 pubmed: 24635773
Hjortrup PB, Haase N, Bundgaard H, Thomsen SL, Winding R, Pettilä V, Aaen A, Lodahl D, Berthelsen RE, Christensen H, the CLASSIC Trial Group and the Scandinavian Critical Care Trials Group, et al. Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med. 2016;42:1695–705. https://doi.org/10.1007/s00134-016-4500-7 .
doi: 10.1007/s00134-016-4500-7 pubmed: 27686349
Hjortrup PB, Haase N, Wetterslev J, Lange T, Bundgaard H, Rasmussen BS, Dey N, Wilkman E, Christensen L, Lodahl D, et al. Effects of fluid restriction on measures of circulatory efficacy in adults with septic shock. Acta Anaesthesiol Scand. 2017;61:390–8. https://doi.org/10.1111/aas.12862 .
doi: 10.1111/aas.12862 pubmed: 28150304
Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL, National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75. https://doi.org/10.1056/NEJMoa062200 .
doi: 10.1056/NEJMoa062200 pubmed: 16714767
Kim F, Nichol G, Maynard C, Hallstrom A, Kudenchuk PJ, Rea T, Copass MK, Carlbom D, Deem S, Longstreth WT Jr, et al. Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. JAMA. 2014;311:45–52. https://doi.org/10.1001/jama.2013.282173 .
doi: 10.1001/jama.2013.282173 pubmed: 24240712
Finfer S, Micallef S, Hammond N, Navarra L, Bellomo R, Billot L, Delaney A, Gallagher M, Gattas D, Li Q, PLUS Study Investigators and the Australian New Zealand Intensive Care Society Clinical Trials Group, et al. Balanced multielectrolyte solution versus saline in critically ill adults. N Engl J Med. 2022;386:815–26. https://doi.org/10.1056/NEJMoa2114464 .
doi: 10.1056/NEJMoa2114464 pubmed: 35041780
Zampieri FG, Machado FR, Biondi RS, Freitas FGR, Veiga VC, Figueiredo RC, Lovato WJ, Amêndola CP, Serpa-Neto A, Paranhos JLR, BaSICS Investigators and the BRICNet members, et al. Effect of intravenous fluid treatment with a balanced solution vs 0.9% saline solution on mortality in critically ill patients: the BaSICS randomized clinical trial. JAMA. 2021;326:1–12. https://doi.org/10.1001/jama.2021.11684 .
doi: 10.1001/jama.2021.11684 pubmed: 34375394 pmcid: 8356145
Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, McGuinness S, Mehrtens J, Myburgh J, Psirides A, SPLIT Investigators, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314:1701–10. https://doi.org/10.1001/jama.2015.12334 .
doi: 10.1001/jama.2015.12334 pubmed: 26444692
Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, Stollings JL, Kumar AB, Hughes CG, Hernandez A, SMART Investigators and the Pragmatic Critical Care Research Group, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378:829–39. https://doi.org/10.1056/NEJMoa1711584 .
doi: 10.1056/NEJMoa1711584 pubmed: 29485925 pmcid: 5846085
Antequera Martin AM, Barea Mendoza JA, Muriel A, Sáez I, Chico-Fernández M, Estrada-Lorenzo JM, Plana MN. Buffered solutions versus 0.9% saline for resuscitation in critically ill adults and children. Cochrane Database Syst Rev. 2019;7:CD012247. https://doi.org/10.1002/14651858.CD012247.pub2 .
doi: 10.1002/14651858.CD012247.pub2 pubmed: 31334842
Hammond DA, Lam SW, Rech MA, Smith MN, Westrick J, Trivedi AP, Balk RA. Balanced crystalloids versus saline in critically ill adults: a systematic review and meta-analysis. Ann Pharmacother. 2020;54:5–13. https://doi.org/10.1177/1060028019866420 .
doi: 10.1177/1060028019866420 pubmed: 31364382
Kawano-Dourado L, Zampieri FG, Azevedo LCP, Correa TD, Figueiro M, Semler MW, Kellum JA, Cavalcanti AB. Low- versus high-chloride content intravenous solutions for critically ill and perioperative adult patients: a systematic review and meta-analysis. Anesth Analg. 2018;126:513–21. https://doi.org/10.1213/ANE.0000000000002641 .
doi: 10.1213/ANE.0000000000002641 pubmed: 29189271
Liu C, Lu G, Wang D, Lei Y, Mao Z, Hu P, Hu J, Liu R, Han D, Zhou F. Balanced crystalloids versus normal saline for fluid resuscitation in critically ill patients: a systematic review and meta-analysis with trial sequential analysis. Am J Emerg Med. 2019;37:2072–8. https://doi.org/10.1016/j.ajem.2019.02.045 .
doi: 10.1016/j.ajem.2019.02.045 pubmed: 30852043
Xue M, Zhang X, Liu F, Chang W, Xie J, Xu J, Yang Y, Qiu H. Effects of chloride content of intravenous crystalloid solutions in critically ill adult patients: a meta-analysis with trial sequential analysis of randomized trials. Ann Intensive Care. 2019;9:30. https://doi.org/10.1186/s13613-019-0506-y .
doi: 10.1186/s13613-019-0506-y pubmed: 30758680 pmcid: 6374495
Zayed YZM, Aburahma AMY, Barbarawi MO, Hamid K, Banifadel MRN, Rashdan L, Bachuwa GI. Balanced crystalloids versus isotonic saline in critically ill patients: systematic review and meta-analysis. J Intensive Care. 2018;6:51. https://doi.org/10.1186/s40560-018-0320-x .
doi: 10.1186/s40560-018-0320-x pubmed: 30140441 pmcid: 6098635
Fujii T, Udy A, Licari E, Romero L, Bellomo R. Sodium bicarbonate therapy for critically ill patients with metabolic acidosis: a scoping and a systematic review. J Crit Care. 2019;51:184–91. https://doi.org/10.1016/j.jcrc.2019.02.027 .
doi: 10.1016/j.jcrc.2019.02.027 pubmed: 30852347
Jaber S, Paugam C, Futier E, Lefrant JY, Lasocki S, Lescot T, Pottecher J, Demoule A, Ferrandière M, Asehnoune K, BICAR-ICU Study Group, et al. Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial. Lancet. 2018;392:31–40. https://doi.org/10.1016/S0140-6736(18)31080-8 .
doi: 10.1016/S0140-6736(18)31080-8 pubmed: 29910040
Zhang Z, Zhu C, Mo L, Hong Y. Effectiveness of sodium bicarbonate infusion on mortality in septic patients with metabolic acidosis. Intensive Care Med. 2018;44:1888–95. https://doi.org/10.1007/s00134-018-5379-2 .
doi: 10.1007/s00134-018-5379-2 pubmed: 30255318
Ghoshal S, Yang V, Brodie D, Radhakrishnan J, Roh DJ, Park S, Claassen J, Agarwal S. In-hospital survival and neurological recovery among patients requiring renal replacement therapy in post-cardiac arrest period. Kidney Int Rep. 2019;4:674–8. https://doi.org/10.1016/j.ekir.2019.02.004 .
doi: 10.1016/j.ekir.2019.02.004 pubmed: 31080922 pmcid: 6506695
Sandroni C, Dell’anna AM, Tujjar O, Geri G, Cariou A, Taccone FS. Acute kidney injury after cardiac arrest: a systematic review and meta-analysis of clinical studies. Minerva Anestesiol. 2016;82:989–99.
pubmed: 26957119
Winther-Jensen M, Kjaergaard J, Lassen JF, Køber L, Torp-Pedersen C, Hansen SM, Lippert F, Kragholm K, Christensen EF, Hassager C. Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005–2013. Scand Cardiovasc J. 2018;52:238–43. https://doi.org/10.1080/14017431.2018.1503707 .
doi: 10.1080/14017431.2018.1503707 pubmed: 30182752
Petek BJ, Bravo PE, Kim F, de Boer IH, Kudenchuk PJ, Shuman WP, Gunn ML, Carlbom DJ, Gill EA, Maynard C, et al. Incidence and risk factors for postcontrast acute kidney injury in survivors of sudden cardiac arrest. Ann Emerg Med. 2016;67:469-476.e1. https://doi.org/10.1016/j.annemergmed.2015.07.516 .
doi: 10.1016/j.annemergmed.2015.07.516 pubmed: 26363571
Ito T, Saitoh D, Takasu A, Kiyozumi T, Sakamoto T, Okada Y. Serum cortisol as a predictive marker of the outcome in patients resuscitated after cardiopulmonary arrest. Resuscitation. 2004;62:55–60. https://doi.org/10.1016/j.resuscitation.2004.02.004 .
doi: 10.1016/j.resuscitation.2004.02.004 pubmed: 15246584
Kim JJ, Lim YS, Shin JH, Yang HJ, Kim JK, Hyun SY, Rhoo I, Hwang SY, Lee G. Relative adrenal insufficiency after cardiac arrest: impact on postresuscitation disease outcome. Am J Emerg Med. 2006;24:684–8. https://doi.org/10.1016/j.ajem.2006.02.017 .
doi: 10.1016/j.ajem.2006.02.017 pubmed: 16984836
Grafton ST, Longstreth WT Jr. Steroids after cardiac arrest: a retrospective study with concurrent, nonrandomized controls. Neurology. 1988;38:1315–6. https://doi.org/10.1212/wnl.38.8.1315 .
doi: 10.1212/wnl.38.8.1315 pubmed: 3399081
Jastremski M, Sutton-Tyrrell K, Vaagenes P, Abramson N, Heiselman D, Safar P. Glucocorticoid treatment does not improve neurological recovery following cardiac arrest: brain resuscitation clinical trial I study group. JAMA. 1989;262:3427–30.
doi: 10.1001/jama.1989.03430240063030 pubmed: 2685382
Niimura T, Zamami Y, Koyama T, Izawa-Ishizawa Y, Miyake M, Koga T, Harada K, Ohshima A, Imai T, Kondo Y, et al. Hydrocortisone administration was associated with improved survival in Japanese patients with cardiac arrest. Sci Rep. 2017;7:17919. https://doi.org/10.1038/s41598-017-17686-3 .
doi: 10.1038/s41598-017-17686-3 pubmed: 29263333 pmcid: 5738407
Tsai MS, Chuang PY, Huang CH, Tang CH, Yu PH, Chang WT, Chen WJ. Postarrest steroid use may improve outcomes of cardiac arrest survivors. Crit Care Med. 2019;47:167–75. https://doi.org/10.1097/CCM.0000000000003468 .
doi: 10.1097/CCM.0000000000003468 pubmed: 30308548
Tsai MS, Huang CH, Chang WT, Chen WJ, Hsu CY, Hsieh CC, Yang CW, Chiang WC, Ma MH, Chen SC. The effect of hydrocortisone on the outcome of out-of-hospital cardiac arrest patients: a pilot study. Am J Emerg Med. 2007;25:318–25. https://doi.org/10.1016/j.ajem.2006.12.007 .
doi: 10.1016/j.ajem.2006.12.007 pubmed: 17349907
Mentzelopoulos SD, Malachias S, Chamos C, Konstantopoulos D, Ntaidou T, Papastylianou A, Kolliantzaki I, Theodoridi M, Ischaki H, Makris D, et al. Vasopressin, steroids, and epinephrine and neurologically favorable survival after in-hospital cardiac arrest: a randomized clinical trial. JAMA. 2013;310:270–9. https://doi.org/10.1001/jama.2013.7832 .
doi: 10.1001/jama.2013.7832 pubmed: 23860985
Mentzelopoulos SD, Zakynthinos SG, Tzoufi M, Katsios N, Papastylianou A, Gkisioti S, Stathopoulos A, Kollintza A, Stamataki E, Roussos C. Vasopressin, epinephrine, and corticosteroids for in-hospital cardiac arrest. Arch Intern Med. 2009;169:15–24. https://doi.org/10.1001/archinternmed.2008.509 .
doi: 10.1001/archinternmed.2008.509 pubmed: 19139319
Mentzelopoulos SD, Koliantzaki I, Karvouniaris M, Vrettou C, Mongardon N, Karlis G, Makris D, Zakynthinos E, Sourlas S, Aloizos S, et al. Exposure to stress-dose steroids and lethal septic shock after in-hospital cardiac arrest: Individual patient data reanalysis of two prior randomized clinical trials that evaluated the vasopressin-steroids-epinephrine combination versus epinephrine alone. Cardiovasc Drugs Ther. 2018;32:339–51. https://doi.org/10.1007/s10557-018-6811-0 .
doi: 10.1007/s10557-018-6811-0 pubmed: 30084038
Donnino MW, Andersen LW, Berg KM, Chase M, Sherwin R, Smithline H, Carney E, Ngo L, Patel PV, Liu X, Collaborating authors from the Beth Israel Deaconess Medical Center’s Center for Resuscitation Science Research Group, et al. Corticosteroid therapy in refractory shock following cardiac arrest: a randomized, double-blind, placebo-controlled, trial. Crit Care. 2016;20:82. https://doi.org/10.1186/s13054-016-1257-x .
doi: 10.1186/s13054-016-1257-x pubmed: 27038920 pmcid: 4818959
Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, NICE-SUGAR Study Investigators, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97. https://doi.org/10.1056/NEJMoa0810625 .
doi: 10.1056/NEJMoa0810625 pubmed: 19318384
Sah Pri A, Chase JG, Pretty CG, Shaw GM, Preiser JC, Vincent JL, Oddo M, Taccone FS, Penning S, Desaive T. Evolution of insulin sensitivity and its variability in out-of-hospital cardiac arrest (OHCA) patients treated with hypothermia. Crit Care. 2014;18:586. https://doi.org/10.1186/s13054-014-0586-x .
doi: 10.1186/s13054-014-0586-x pubmed: 25349023 pmcid: 4234829
Kim YM, Youn CS, Kim SH, Lee BK, Cho IS, Cho GC, Jeung KW, Oh SH, Choi SP, Shin JH, Korean Hypothermia Network Investigators, et al. Adverse events associated with poor neurological outcome during targeted temperature management and advanced critical care after out-of-hospital cardiac arrest. Crit Care. 2015;19:283. https://doi.org/10.1186/s13054-015-0991-9 .
doi: 10.1186/s13054-015-0991-9 pubmed: 26202789 pmcid: 4511983
Nielsen N, Sunde K, Hovdenes J, Riker RR, Rubertsson S, Stammet P, Nilsson F, Hypothermia Network. Friberg H Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit Care Med. 2011;39:57–64. https://doi.org/10.1097/CCM.0b013e3181fa4301 .
doi: 10.1097/CCM.0b013e3181fa4301 pubmed: 20959789
Woo JH, Lim YS, Yang HJ, Hyun SY, Cho JS, Kim JJ, Lee G. The relationship between the decreased rate of initial blood glucose and neurologic outcomes in survivors of out-of-hospital cardiac arrest receiving therapeutic hypothermia. Neurocrit Care. 2017;26:402–10. https://doi.org/10.1007/s12028-016-0353-8 .
doi: 10.1007/s12028-016-0353-8 pubmed: 28004333
Oksanen T, Skrifvars MB, Varpula T, Kuitunen A, Pettilä V, Nurmi J, Castrén M. Strict versus moderate glucose control after resuscitation from ventricular fibrillation. Intensive Care Med. 2007;33:2093–100. https://doi.org/10.1007/s00134-007-0876-8 .
doi: 10.1007/s00134-007-0876-8 pubmed: 17928994
Hazinski MF, Nolan JP, Aickin R, Bhanji F, Billi JE, Callaway CW, Castren M, de Caen AR, Ferrer JME, Finn JC, et al. Part 1: executive summary: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2015;132(suppl 1):S2–39. https://doi.org/10.1161/CIR.0000000000000270 .
doi: 10.1161/CIR.0000000000000270 pubmed: 26472854
Greif R, Lockey AS, Conaghan P, Lippert A, De Vries W, Monsieurs KG, Education and Implementation of Resuscitation Section Collaborators. European Resuscitation Council guidelines for resuscitation 2015: education and implementation of resuscitation. Resuscitation. 2015;95:288–301. https://doi.org/10.1016/j.resuscitation.2015.07.032 .
doi: 10.1016/j.resuscitation.2015.07.032 pubmed: 26477418
Xian Y, Holloway RG, Chan PS, Noyes K, Shah MN, Ting HH, Chappel AR, Peterson ED, Friedman B. Association between stroke center hospitalization for acute ischemic stroke and mortality. JAMA. 2011;305:373–80. https://doi.org/10.1001/jama.2011.22 .
doi: 10.1001/jama.2011.22 pubmed: 21266684 pmcid: 3290863
Moran CG, Lecky F, Bouamra O, Lawrence T, Edwards A, Woodford M, Willett K, Coats TJ. Changing the system: major trauma patients and their outcomes in the NHS (England) 2008–17. EClinicalMedicine. 2018;2–3:13–21. https://doi.org/10.1016/j.eclinm.2018.07.001 .
doi: 10.1016/j.eclinm.2018.07.001 pubmed: 31193723 pmcid: 6537569
Worthington H, Pickett W, Morrison LJ, Scales DC, Zhan C, Lin S, Dorian P, Dainty KN, Ferguson ND, Brooks SC, Rescu Investigators. The impact of hospital experience with out-of-hospital cardiac arrest patients on post cardiac arrest care. Resuscitation. 2017;110:169–75. https://doi.org/10.1016/j.resuscitation.2016.08.032 .
doi: 10.1016/j.resuscitation.2016.08.032 pubmed: 27658654
Kurz MC, Donnelly JP, Wang HE. Variations in survival after cardiac arrest among academic medical center-affiliated hospitals. PLoS ONE. 2017;12:e0178793. https://doi.org/10.1371/journal.pone.0178793 .
doi: 10.1371/journal.pone.0178793 pubmed: 28582400 pmcid: 5459445
Matsuyama T, Kiyohara K, Kitamura T, Nishiyama C, Nishiuchi T, Hayashi Y, Kawamura T, Ohta B, Iwami T. Hospital characteristics and favourable neurological outcome among patients with out-of-hospital cardiac arrest in Osaka, Japan. Resuscitation. 2017;110:146–53. https://doi.org/10.1016/j.resuscitation.2016.11.009 .
doi: 10.1016/j.resuscitation.2016.11.009 pubmed: 27893969
Chocron R, Bougouin W, Beganton F, Juvin P, Loeb T, Adnet F, Lecarpentier E, Lamhaut L, Jost D, Marijon E, et al. Are characteristics of hospitals associated with outcome after cardiac arrest? Insights from the Great Paris registry. Resuscitation. 2017;118:63–9. https://doi.org/10.1016/j.resuscitation.2017.06.019 .
doi: 10.1016/j.resuscitation.2017.06.019 pubmed: 28648808
Resar R, Griffin FA, Haraden C, Nolan TW. Using care bundles to improve health care quality. IHI Innovation Series White Paper. Institute for Healthcare Improvement; 2012. https://ihi.org . Accessed 5 June 2021.
Akin M, Sieweke JT, Zauner F, Garcheva V, Tongers J, Napp LC, Friedrich L, Treptau J, Bahntje MU, Flierl U, et al. Mortality in patients with out-of-hospital cardiac arrest undergoing a standardized protocol including therapeutic hypothermia and routine coronary angiography: experience from the HACORE registry. JACC Cardiovasc Interv. 2018;11:1811–20. https://doi.org/10.1016/j.jcin.2018.06.022 .
doi: 10.1016/j.jcin.2018.06.022 pubmed: 30236353
Walters EL, Morawski K, Dorotta I, Ramsingh D, Lumen K, Bland D, Clem K, Nguyen HB. Implementation of a post-cardiac arrest care bundle including therapeutic hypothermia and hemodynamic optimization in comatose patients with return of spontaneous circulation after out-of-hospital cardiac arrest: a feasibility study. Shock. 2011;35:360–6. https://doi.org/10.1097/SHK.0b013e318204c106 .
doi: 10.1097/SHK.0b013e318204c106 pubmed: 21068697
Rittenberger JC, Guyette FX, Tisherman SA, DeVita MA, Alvarez RJ, Callaway CW. Outcomes of a hospital-wide plan to improve care of comatose survivors of cardiac arrest. Resuscitation. 2008;79:198–204. https://doi.org/10.1016/j.resuscitation.2008.08.014 .
doi: 10.1016/j.resuscitation.2008.08.014 pubmed: 18951113 pmcid: 2590640
Storm C, Leithner C, Krannich A, Suarez JI, Stevens RD. Impact of structured pathways for postcardiac arrest care: a systematic review and meta-analysis. Crit Care Med. 2019;47:e710–6. https://doi.org/10.1097/CCM.0000000000003827 .
doi: 10.1097/CCM.0000000000003827 pubmed: 31306259
Wendlandt B, Ceppe A, Choudhury S, Nelson JE, Cox CE, Hanson LC, Danis M, Tulsky JA, Carson SS. Risk factors for post-traumatic stress disorder symptoms in surrogate decision-makers of patients with chronic critical illness. Ann Am Thorac Soc. 2018;15:1451–8. https://doi.org/10.1513/AnnalsATS.201806-420OC .
doi: 10.1513/AnnalsATS.201806-420OC pubmed: 30199658 pmcid: 6322020
Seaman JB, Arnold RM, Buddadhumaruk P, Shields AM, Gustafson RM, Felman K, Newdick W, SanPedro R, Mackenzie S, Morse JQ, et al. Protocol and fidelity monitoring plan for four supports: a multicenter trial of an intervention to support surrogate decision makers in intensive care units. Ann Am Thorac Soc. 2018;15:1083–91. https://doi.org/10.1513/AnnalsATS.201803-157SD .
doi: 10.1513/AnnalsATS.201803-157SD pubmed: 30088971 pmcid: 6322040
Kon AA. The shared decision-making continuum. JAMA. 2010;304:903–4. https://doi.org/10.1001/jama.2010.1208 .
doi: 10.1001/jama.2010.1208 pubmed: 20736477
Mockford C, Fritz Z, George R, Court R, Grove A, Clarke B, Field R, Perkins GD. Do not attempt cardiopulmonary resuscitation (DNACPR) orders: a systematic review of the barriers and facilitators of decision-making and implementation. Resuscitation. 2015;88:99–113. https://doi.org/10.1016/j.resuscitation.2014.11.016 .
doi: 10.1016/j.resuscitation.2014.11.016 pubmed: 25433293
Barnato AE, Arnold RM. The effect of emotion and physician communication behaviors on surrogates’ life-sustaining treatment decisions: a randomized simulation experiment. Crit Care Med. 2013;41:1686–91. https://doi.org/10.1097/CCM.0b013e31828a233d .
doi: 10.1097/CCM.0b013e31828a233d pubmed: 23660727 pmcid: 3687021
Shah RD, Rasinski KA, Alexander GC. The influence of surrogate decision makers on clinical decision making for critically ill adults. J Intensive Care Med. 2015;30:278–85. https://doi.org/10.1177/0885066613516597 .
doi: 10.1177/0885066613516597 pubmed: 24362444
Sharshar T, Citerio G, Andrews PJ, Chieregato A, Latronico N, Menon DK, Puybasset L, Sandroni C, Stevens RD. Neurological examination of critically ill patients: a pragmatic approach: report of an ESICM expert panel. Intensive Care Med. 2014;40:484–95. https://doi.org/10.1007/s00134-014-3214-y .
doi: 10.1007/s00134-014-3214-y pubmed: 24522878
Oddo M, Bracard S, Cariou A, Chanques G, Citerio G, Clerckx B, Godeau B, Godier A, Horn J, Jaber S, et al. Update in neurocritical care: a summary of the 2018 Paris international conference of the French Society of Intensive Care. Ann Intensive Care. 2019;9:47. https://doi.org/10.1186/s13613-019-0523-x .
doi: 10.1186/s13613-019-0523-x pubmed: 30993550 pmcid: 6468018
Stone JJ, Childs S, Smith LE, Battin M, Papadakos PJ, Huang JH. Hourly neurologic assessments for traumatic brain injury in the ICU. Neurol Res. 2014;36:164–9. https://doi.org/10.1179/1743132813Y.0000000285 .
doi: 10.1179/1743132813Y.0000000285 pubmed: 24410060
Maas MB, Rosenberg NF, Kosteva AR, Bauer RM, Guth JC, Liotta EM, Prabhakaran S, Naidech AM. Surveillance neuroimaging and neurologic examinations affect care for intracerebral hemorrhage. Neurology. 2013;81:107–12. https://doi.org/10.1212/WNL.0b013e31829a33e4 .
doi: 10.1212/WNL.0b013e31829a33e4 pubmed: 23739227 pmcid: 3770177
Maas MB, Berman MD, Guth JC, Liotta EM, Prabhakaran S, Naidech AM. Neurochecks as a biomarker of the temporal profile and clinical impact of neurologic changes after intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2015;24:2026–31. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.04.045 .
doi: 10.1016/j.jstrokecerebrovasdis.2015.04.045 pubmed: 26143415 pmcid: 4558336
McLaughlin DC, Hartjes TM, Freeman WD. Sleep deprivation in neurointensive care unit patients from serial neurological checks: How much is too much? J Neurosci Nurs. 2018;50:205–10. https://doi.org/10.1097/JNN.0000000000000378 .
doi: 10.1097/JNN.0000000000000378 pubmed: 29894442
Uğraş GA, Babayigit S, Tosun K, Aksoy G, Turan Y. The effect of nocturnal patient care interventions on patient sleep and satisfaction with nursing care in neurosurgery intensive care unit. J Neurosci Nurs. 2015;47:104–12. https://doi.org/10.1097/JNN.0000000000000122 .
doi: 10.1097/JNN.0000000000000122 pubmed: 25700196
Olson DM, Stutzman S, Saju C, Wilson M, Zhao W, Aiyagari V. Interrater reliability of pupillary assessments. Neurocrit Care. 2016;24:251–7. https://doi.org/10.1007/s12028-015-0182-1 .
doi: 10.1007/s12028-015-0182-1 pubmed: 26381281
Jahns FP, Miroz JP, Messerer M, Daniel RT, Taccone FS, Eckert P, Oddo M. Quantitative pupillometry for the monitoring of intracranial hypertension in patients with severe traumatic brain injury. Crit Care. 2019;23:155. https://doi.org/10.1186/s13054-019-2436-3 .
doi: 10.1186/s13054-019-2436-3 pubmed: 31046817 pmcid: 6498599
McNett M, Moran C, Grimm D, Gianakis A. Pupillometry trends in the setting of increased intracranial pressure. J Neurosci Nurs. 2018;50:357–61. https://doi.org/10.1097/JNN.0000000000000401 .
doi: 10.1097/JNN.0000000000000401 pubmed: 30407967
Osman M, Stutzman SE, Atem F, Olson D, Hicks AD, Ortega-Perez S, Aoun SG, Salem A, Aiyagari V. Correlation of objective pupillometry to midline shift in acute stroke patients. J Stroke Cerebrovasc Dis. 2019;28:1902–10. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.03.055 .
doi: 10.1016/j.jstrokecerebrovasdis.2019.03.055 pubmed: 31031146

Auteurs

Karen G Hirsch (KG)

Stanford -University, Stanford, USA.

Benjamin S Abella (BS)

University of Pennsylvania, Philadelphia, USA.

Edilberto Amorim (E)

San Francisco-Weill Institute for Neurosciences, University of California, San Francisco, USA.

Mary Kay Bader (MK)

Providence Mission Hospital Nursing Center of Excellence/Critical Care Services, Mission Viejo, USA.

Jeffrey F Barletta (JF)

Midwestern -University, Downers Grove, USA.

Katherine Berg (K)

Beth Israel Deaconess Medical Center, Boston, USA.

Clifton W Callaway (CW)

University of Pittsburgh, Pittsburgh, USA.

Hans Friberg (H)

Skane University Hospital, Malmö, Sweden.

Emily J Gilmore (EJ)

Yale University School of Medicine, New Haven, USA.

David M Greer (DM)

Boston University School of Medicine, Boston, USA.

Karl B Kern (KB)

Sarver Heart Center, University of Arizona, Tucson, USA.

Sarah Livesay (S)

Rush University College of Nursing, Chicago, USA.

Teresa L May (TL)

Maine Medical Center, Portland, USA.

Robert W Neumar (RW)

University of Michigan, Ann Arbor, USA.

Jerry P Nolan (JP)

Warwick Medical School, University of Warwick, Coventry, UK.
Royal United Hospital, Bath, UK.

Mauro Oddo (M)

CHUV-Lausanne University Hospital, Lausanne, Switzerland.

Mary Ann Peberdy (MA)

Virginia Commonwealth University, Richmond, USA.

Samuel M Poloyac (SM)

University of Texas at Austin, Austin, USA.

David Seder (D)

Maine Medical Center, Portland, USA.

Fabio Silvio Taccone (FS)

Hopital Universitaire de Bruxelles, Brussels, Belgium.

Anezi Uzendu (A)

St. Luke's Mid America Heart Institute, Kansas City, USA.

Brian Walsh (B)

University of Texas Medical Branch School of Health Sciences, Galveston, USA.

Janice L Zimmerman (JL)

The Methodist Hospital Physician Organization, Houston, USA.

Romergryko G Geocadin (RG)

Johns Hopkins University School of Medicine, Baltimore, USA. rgeocad1@jhmi.edu.

Classifications MeSH