BRCA1/2 reversion mutations in a pan-cancer cohort.

BRCA1/2 PARP inhibitor homologous recombination deficiency platinum-based chemotherapy reversion mutation

Journal

Cancer science
ISSN: 1349-7006
Titre abrégé: Cancer Sci
Pays: England
ID NLM: 101168776

Informations de publication

Date de publication:
01 Dec 2023
Historique:
revised: 09 11 2023
received: 13 09 2023
accepted: 17 11 2023
medline: 2 12 2023
pubmed: 2 12 2023
entrez: 2 12 2023
Statut: aheadofprint

Résumé

Tumor sensitivity to platinum (Pt)-based chemotherapy and poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors is increased by homologous recombination deficiency-causing mutations; in particular, reversion mutations cause drug resistance by restoring protein function. Treatment response is predicted by breast cancer susceptibility gene 1/2 (BRCA1/2) mutations; however, BRCA1/2 reversion mutations have not been comprehensively studied in pan-cancer cohorts. We aimed to characterize BRCA1/2 reversion mutations in a large pan-cancer cohort of Japanese patients by retrospectively analyzing sequencing data for BRCA1/2 pathogenic/likely pathogenic mutations in 3738 patients with 32 cancer types. We identified somatic mutations in tumors or circulating cell-free DNA that could restore the ORF of adverse alleles, including reversion mutations. We identified 12 (0.32%) patients with somatic BRCA1 (n = 3) and BRCA2 (n = 9) reversion mutations in breast (n = 4), ovarian/fallopian tube/peritoneal (n = 4), pancreatic (n = 2), prostate (n = 1), and gallbladder (n = 1) cancers. We identified 21 reversion events-BRCA1 (n = 3), BRCA2 (n = 18)-including eight pure deletions, one single-nucleotide variant, six multinucleotide variants, and six deletion-insertions. Seven (33.3%) reversion deletions showed a microhomology length greater than 1 bp, suggesting microhomology-mediated end-join repair. Disease course data were obtained for all patients with reversion events: four patients acquired mutations after PARP-inhibitor treatment failure, two showed somatic reversion mutations after disease progression, following Pt-based treatment, five showed mutations after both treatments, one patient with pancreatic cancer and BRCA1 reversion mutations had no history of either treatment. Although reversion mutations commonly occur in BRCA-associated cancers, our findings suggest that reversion mutations due to Pt-chemotherapy might be correlated with BRCA1/2-mediated tumorigenesis even in non-BRCA-associated histologies.

Identifiants

pubmed: 38041241
doi: 10.1111/cas.16033
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Cell Science Research Foundation
Organisme : Japan Agency for Medical Research and Development
ID : JP22ck0106872
Organisme : Japan Society for the Promotion of Science
ID : 23K08829
Organisme : Kanzawa Medical Research Foundation
Organisme : Takeda Science Foundation
Organisme : Uehara Memorial Foundation

Informations de copyright

© 2023 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

Références

Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917-921. doi:10.1038/nature03445
Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913-917. doi:10.1038/nature03443
Tan DSP, Rothermundt C, Thomas K, et al. “BRCAness” syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J Clin Oncol. 2008;26(34):5530-5536. doi:10.1200/JCO.2008.16.1703
Vencken PMLH, Kriege M, Hoogwerf D, et al. Chemosensitivity and outcome of BRCA1− and BRCA2-associated ovarian cancer patients after first-line chemotherapy compared with sporadic ovarian cancer patients. Ann Oncol. 2011;22(6):1346-1352. doi:10.1093/annonc/mdq628
Noordermeer SM, van Attikum H. PARP inhibitor resistance: a tug-of-war in BRCA-mutated cells. Trends Cell Biol. 2019;29(10):820-834. doi:10.1016/j.tcb.2019.07.008
Jonsson P, Bandlamudi C, Cheng ML, et al. Tumour lineage shapes BRCA-mediated phenotypes. Nature. 2019;571(7766):576-579. doi:10.1038/s41586-019-1382-1
Edwards SL, Brough R, Lord CJ, et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature. 2008;451(7182):1111-1115. doi:10.1038/nature06548
Lin KK, Harrell MI, Oza AM, et al. BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 2019;9(2):210-219. doi:10.1158/2159-8290.CD-18-0715
Dréan A, Williamson CT, Brough R, et al. Modeling therapy resistance in BRCA1/2-mutant cancers. Mol Cancer Ther. 2017;16(9):2022-2034. doi:10.1158/1535-7163.MCT-17-0098
Tobalina L, Armenia J, Irving E, O'Connor MJ, Forment JV. A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance. Ann Oncol. 2021;32(1):103-112. doi:10.1016/j.annonc.2020.10.470
Simmons AD, Nguyen M, Pintus E. Polyclonal BRCA2 mutations following carboplatin treatment confer resistance to the PARP inhibitor rucaparib in a patient with mCRPC: a case report. BMC Cancer. 2020;20(1):215. doi:10.1186/s12885-020-6657-2
Pettitt SJ, Frankum JR, Punta M, et al. Clinical BRCA1/2 reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance. Cancer Discov. 2020;10(10):1475-1488. doi:10.1158/2159-8290.CD-19-1485
Vidula N, Rich TA, Sartor O, et al. Routine plasma-based genotyping to comprehensively detect germline, somatic, and reversion BRCA mutations among patients with advanced solid tumors. Clin Cancer Res. 2020;26(11):2546-2555. doi:10.1158/1078-0432.CCR-19-2933
Domchek SM. Reversion mutations with clinical use of PARP inhibitors: many genes, many versions. Cancer Discov. 2017;7(9):937-939. doi:10.1158/2159-8290.CD-17-0734
Sakai W, Swisher EM, Karlan BY, et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature. 2008;451(7182):1116-1120. doi:10.1038/nature06633
U.S. Food and Drug Administration. FoundationOne CDx- P170019/S014 technical information. Accessed February 18, 2022 https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019S006C.pdf
U.S. Food and Drug Administration. FoundationOne Liquid CDx (F1 LiquidCDx)- P190032/S010 technical information. Accessed June 08, 2023 https://www.accessdata.fda.gov/cdrh_docs/pdf19/P190032S010C.pdf
Pesaran T, Karam R, Huether R, et al. Beyond DNA: an integrated and functional approach for classifying germline variants in breast cancer genes. Int J Breast Cancer. 2016;2016:2469523. doi:10.1155/2016/2469523
Plon SE, Eccles DM, Easton D, et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat. 2008;29(11):1282-1291. doi:10.1002/humu.20880
Niu B, Ye K, Zhang Q, et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics. 2014;30(7):1015-1016. doi:10.1093/bioinformatics/btt755
Taheri-Ghahfarokhi A, Taylor BJM, Nitsch R, et al. Decoding non-random mutational signatures at Cas9 targeted sites. Nucleic Acids Res. 2018;46(16):8417-8434. doi:10.1093/nar/gky653
Rebbeck TR, Mitra N, Wan F, et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. Jama. 2015;313(13):1347-1361. doi:10.1001/jama.2014.5985
Ceccaldi R, Liu JC, Amunugama R, et al. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature. 2015;518(7538):258-262. doi:10.1038/nature14184
Murciano-Goroff YR, Schram AM, Rosen EY, et al. Reversion mutations in germline BRCA1/2-mutant tumors reveal a BRCA-mediated phenotype in non-canonical histologies. Nat Commun. 2022;13(1):7182. doi:10.1038/s41467-022-34109-8
Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst. 1999;91(15):1310-1316. doi:10.1093/jnci/91.15.1310
Momozawa Y, Sasai R, Usui Y, et al. Expansion of cancer risk profile for BRCA1 and BRCA2 pathogenic variants. JAMA Oncol. 2022;8(6):871-878. doi:10.1001/jamaoncol.2022.0476
Nguyen LWM, Martens J, Van Hoeck A, Cuppen E. Pan-cancer landscape of homologous recombination deficiency. Nat Commun. 2020;11(1):5584. doi:10.1038/s41467-020-19406-4
Pellegrini L, Yu DS, Lo T, et al. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature. 2002;420(6913):287-293. doi:10.1038/nature01230
Siaud N, Barbera MA, Egashira A, et al. Plasticity of BRCA2 function in homologous recombination: genetic interactions of the PALB2 and DNA binding domains. PLoS Genet. 2011;7(12):e1002409. doi:10.1371/journal.pgen.1002409
Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet. 2001;29(4):418-425. doi:10.1038/ng747
Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017;18(8):495-506. doi:10.1038/nrm.2017.48
Maga G, Shevelev I, Ramadan K, Spadari S, Hübscher U. DNA polymerase θ purified from human cells is a high-fidelity enzyme. J Mol Biol. 2002;319(2):359-369. doi:10.1016/S0022-2836(02)00325-X
Swisher EM, Sakai W, Karlan BY, Wurz K, Urban N, Taniguchi T. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 2008;68(8):2581-2586. doi:10.1158/0008-5472.CAN-08-0088
Norquist B, Wurz KA, Pennil CC, et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol. 2011;29(22):3008-3015. doi:10.1200/JCO.2010.34.2980

Auteurs

Kohei Nakamura (K)

Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan.
Department of Obstetrics and Gynecology, Kumagaya General Hospital, Kumagaya, Japan.

Hideyuki Hayashi (H)

Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan.

Ryutaro Kawano (R)

Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan.

Marin Ishikawa (M)

Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan.

Eriko Aimono (E)

Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan.
Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.

Takaaki Mizuno (T)

Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan.

Hajime Kuroda (H)

Department of Diagnostic Pathology, Adachi Medical Center, Tokyo Women's Medical University, Tokyo, Japan.

Yasuyuki Kojima (Y)

Showa University Institute for Clinical Genetics and Genomics, Tokyo, Japan.

Naoki Niikura (N)

Department of Breast Oncology, Tokai University School of Medicine, Isehara, Japan.

Aya Kawanishi (A)

Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan.

Kei Takeshita (K)

Department of Clinical Genetics, Tokai University Hospital, Isehara, Japan.

Shinsuke Suzuki (S)

Cancer Center, Kagoshima University Hospital, Kagoshima, Japan.

Shinichi Ueno (S)

Cancer Center, Kagoshima University Hospital, Kagoshima, Japan.

Kosuke Okuwaki (K)

Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan.

Jiichiro Sasaki (J)

Division of Clinical Oncology, Department of Comprehensive Medicine, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan.

Masatoshi Yamaguchi (M)

Division of Clinical Genetics, University of Miyazaki Hospital, Miyazaki, Japan.

Kenta Masuda (K)

Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.

Tatsuyuki Chiyoda (T)

Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.

Wataru Yamagami (W)

Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.

Chihiro Okada (C)

Department of Biomedical Informatics, Communication Engineering Center, Electronic Systems Business Group, Mitsubishi Electric Software Co., Ltd., Amagasaki, Japan.

Sachio Nohara (S)

Department of Biomedical Informatics, Communication Engineering Center, Electronic Systems Business Group, Mitsubishi Electric Software Co., Ltd., Amagasaki, Japan.

Shigeki Tanishima (S)

Department of Biomedical Informatics, Communication Engineering Center, Electronic Systems Business Group, Mitsubishi Electric Software Co., Ltd., Amagasaki, Japan.

Hiroshi Nishihara (H)

Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan.

Classifications MeSH