Surface Reconstruction Facilitated by Fluorine Migration and Bimetallic Center in NiCo Bimetallic Fluoride Toward Oxygen Evolution Reaction.

bimetallic fluoride fluorine migration oxygen evolution reaction surface reconstruction

Journal

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
ISSN: 2198-3844
Titre abrégé: Adv Sci (Weinh)
Pays: Germany
ID NLM: 101664569

Informations de publication

Date de publication:
03 Dec 2023
Historique:
revised: 06 11 2023
received: 20 09 2023
medline: 4 12 2023
pubmed: 4 12 2023
entrez: 3 12 2023
Statut: aheadofprint

Résumé

Oxygen evolution reaction (OER) is a critical anodic reaction of electrochemical water splitting, developing a high-efficiency electrocatalyst is essential. Transition metal-based catalysts are much more cost-effective if comparable activities can be achieved. Among them, fluorides are rarely reported due to their low aqueous stability of coordination and low electric conductivity. Herein, a NiCo bimetallic fluoride with good crystallinity is designed and constructed, and significantly enhanced catalytic activity and conductivity are observed. The inevitable oxidation of transition metal ions at high potential and the dissociation of F

Identifiants

pubmed: 38044293
doi: 10.1002/advs.202306758
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2306758

Subventions

Organisme : Natural Science Foundation of Hubei Province
ID : 2021CFB144
Organisme : Large-Scale Instrument and Equipment Sharing Foundation of Wuhan University

Informations de copyright

© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.

Références

a) J. Zhang, Y. Ye, Z. Wang, Y. Xu, L. Gui, B. He, L. Zhao, Adv. Sci. 2022, 9, 2201916;
b) K. Lemoine, J. Lhoste, A. Hémon-Ribaud, N. Heidary, V. Maisonneuve, A. Guiet, N. Kornienko, Chem. Sci. 2019, 10, 9209.
a) H. Wang, T. Zhai, Y. Wu, T. Zhou, B. Zhou, C. Shang, Z. Guo, Adv. Sci. 2023, 10, 2301706;
b) F. Shi, Z. Geng, K. Huang, Q. Liang, Y. Zhang, Y. Sun, J. Cao, S. Feng, Adv. Sci. 2018, 5, 1800575;
c) K. Jayaramulu, J. Masa, D. M. Morales, O. Tomanec, V. Ranc, M. Petr, P. Wilde, Y.-T. Chen, R. Zboril, W. Schuhmann, R. A. Fischer, Adv. Sci. 2018, 5, 1801029.
H. Chen, X. Liang, Y. Liu, X. Ai, T. Asefa, X. Zou, Adv. Mater. 2020, 32, 2002435.
a) I. C. Man, H.-Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, ChemCatChem. 2011, 3, 1159;
b) A. Zagalskaya, V. Alexandrov, ACS Catal. 2020, 10, 3650;
c) H. Over, ACS Catal. 2021, 11, 8848.
a) X. Zhang, Z. Luo, Z. Zhou, Y. Wang, Z. Cui, Z. Gao, J. Shi, T. Cao, X. Fan, J. Electroanal. Chem. 2022, 922, 116731;
b) Q. Zhang, J. Guan, Adv. Funct. Mater. 2020, 30, 2000768;
c) W.-H. Lai, L.-F. Zhang, W.-B. Hua, S. Indris, Z.-C. Yan, Z. Hu, B. Zhang, Y. Liu, L. Wang, M. Liu, R. Liu, Y.-X. Wang, J.-Z. Wang, Z. Hu, H.-K. Liu, S.-L. Chou, S.-X. Dou, Angew. Chem., Int. Ed. 2019, 58, 11868;
d) Z. Chen, X. Wang, S. Keßler, Q. Fan, M. Huang, H. Cölfen, J. Energy Chem. 2022, 71, 89.
a) C. Das, N. Sinha, P. Roy, Small 2022, 18, 2202033;
b) T. Guo, L. Li, Z. Wang, Adv. Energy Mater. 2022, 12, 2200827.
X. Ma, K. Li, X. Zhang, B. Wei, H. Yang, L. Liu, M. Zhang, X. Zhang, Y. Chen, J. Mater. Chem. A 2019, 7, 14904.
a) K. Kawashima, R. A. Márquez-Montes, H. Li, K. Shin, C. L. Cao, K. M. Vo, Y. J. Son, B. R. Wygant, A. Chunangad, D. H. Youn, G. Henkelman, V. H. Ramos-Sánchez, C. B. Mullins, Mater. Adv. 2021, 2, 2299;
b) P. Chen, K. Xu, Z. Fang, Y. Tong, J. Wu, X. Lu, X. Peng, H. Ding, C. Wu, Y. Xie, Angew. Chem., Int. Ed. 2015, 54, 14710.
a) J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, I. D. Sharp, Nat. Mater. 2017, 16, 335;
b) C. Guo, X. Sun, X. Kuang, L. Gao, M. Zhao, L. Qu, Y. Zhang, D. Wu, X. Ren, Q. Wei, J. Mater. Chem. A 2019, 7, 1005.
J. Liu, Y. Ji, J. Nai, X. Niu, Y. Luo, L. Guo, S. Yang, Energy Environ. Sci. 2018, 11, 1736.
a) X. Wei, Y. Zhang, H. He, L. Peng, S. Xiao, S. Yao, P. Xiao, Chem. Commun. 2019, 55, 10896;
b) B. Wei, G. Xu, J. Hei, L. Zhang, T. Huang, Q. Wang, J. Colloid Interface Sci. 2021, 602, 619.
a) X. Yu, S. Xu, X. Liu, X. Cheng, Y. Du, Q. Wu, J. Alloy. Compd. 2021, 878, 160388;
b) L. Hui, Y. Xue, D. Jia, Z. Zuo, Y. Li, H. Liu, Y. Zhao, Y. Li, ACS Appl. Mater. Interfaces 2018, 10, 1771.
Z. Liu, H. Liu, X. Gu, L. Feng, Chem. Eng. J. 2020, 397, 125500.
a) W. Li, A. Murisana, Q. Zhang, S. Wang, G. De, Electrochem. Commun. 2022, 141, 107363;
b) S. Guddehalli Chandrappa, P. Moni, D. Chen, G. Karkera, K. R. Prakasha, R. A. Caruso, A. S. Prakash, ACS Appl. Energy Mater. 2021, 4, 13425.
a) H. Jia, N. Yao, J. Zhu, W. Luo, Chem. Eur. J. 2023, 29, 202203073;
b) X. Chen, Y. Cheng, Y. Wen, Y. Wang, X. Yan, J. Wei, S. He, J. Zhou, Adv. Sci. 2022, 9, 2204742.
a) R. Paul, Q. Zhai, A. K. Roy, L. Dai, Interdiscip. Mater. 2022, 1, 28;
b) W. Huang, J. Li, X. Liao, R. Lu, C. Ling, X. Liu, J. Meng, L. Qu, M. Lin, X. Hong, X. Zhou, S. Liu, Y. Zhao, L. Zhou, L. Mai, Adv. Mater. 2022, 34, 2200270.
a) Q. Wang, Z. Zhang, S. Shi, F. Wu, Z. Zhang, G. Li, Y. Suo, J. Electroanal. Chem. 2021, 894, 115397;
b) N. Askari, M. Beheshti, D. Mowla, M. Farhadian, Chemosphere 2020, 251, 126453;
c) A. Di Santo, H. Osiry, E. Reguera, P. Alborés, R. E. Carbonio, A. Ben Altabef, D. M. Gil, New J. Chem. 2018, 42, 1347.
F. Wang, Y.-X. Tan, H. Yang, H.-X. Zhang, Y. Kang, J. Zhang, Chem. Commun. 2011, 47, 5828.
A. H. A. Rahim, S. N. F. Yusuf, S. R. Majid, Z. Osman, J. Appl. Electrochem. 2021, 52, 159.
a) M. Kruk, M. Jaroniec, Chem. Mater 2001, 13, 3169;
b) K. A. Cychosz, R. Guillet-Nicolas, J. García-Martínez, M. Thommes, Chem. Soc. Rev. 2017, 46, 389.
a) K. Huang, D. Peng, Z. Yao, J. Xia, B. Zhang, H. Liu, Z. Chen, F. Wu, J. Wu, Y. Huang, Chem. Eng. J. 2021, 425, 131533;
b) K. Huang, B. Zhang, J. Wu, T. Zhang, D. Peng, X. Cao, Z. Zhang, Z. Li, Y. Huang, J. Mater. Chem. A 2020, 8, 11938.
A. Saad, Y. Gao, K. A. Owusu, W. Liu, Y. Wu, A. Ramiere, H. Guo, P. Tsiakaras, X. Cai, Small 2022, 18, 2104303.
P.-Y. Lee, L.-Y. Lin, Energy 2022, 239, 122129.
a) Z. Chen, Y. Ha, H. Jia, X. Yan, M. Chen, M. Liu, R. Wu, Adv. Energy Mater. 2019, 9, 1803918;
b) H. Xu, K. Ye, J. Yin, K. Zhu, J. Yan, G. Wang, D. Cao, J. Power Sources 2021, 491, 229592.
L. Li, X. Cao, J. Huo, J. Qu, W. Chen, C. Liu, Y. Zhao, H. Liu, G. Wang, J. Energy Chem. 2023, 76, 195.
Y. Qi, Y. Zhang, L. Yang, Y. Zhao, Y. Zhu, H. Jiang, C. Li, Nat. Commun. 2022, 13, 4602.
Y. Wang, B. Liu, X. Shen, H. Arandiyan, T. Zhao, Y. Li, M. Garbrecht, Z. Su, L. Han, A. Tricoli, C. Zhao, Adv. Energy Mater. 2021, 11, 2003759.

Auteurs

Zhenhang Xu (Z)

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China.

Wei Zuo (W)

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China.

Yueying Yu (Y)

School of Nursing, Wuhan University, Wuhan, Hubei, 430072, P. R. China.

Jinyan Liu (J)

Department of Biological and Chemical Engineering, Zhixing College of Hubei University, Wuhan, Hubei, 430011, P. R. China.

Gongzhen Cheng (G)

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China.

Pingping Zhao (P)

School of Nursing, Wuhan University, Wuhan, Hubei, 430072, P. R. China.

Classifications MeSH