Potential regulatory role of PGC-1α within the skeletal muscle during metabolic adaptations in response to high-fat diet feeding in animal models.

High-fat diet Insulin resistance Mitochondrial function Obesity PGC-1α Skeletal muscle

Journal

Pflugers Archiv : European journal of physiology
ISSN: 1432-2013
Titre abrégé: Pflugers Arch
Pays: Germany
ID NLM: 0154720

Informations de publication

Date de publication:
04 Dec 2023
Historique:
received: 07 03 2023
accepted: 23 11 2023
revised: 13 11 2023
medline: 4 12 2023
pubmed: 4 12 2023
entrez: 3 12 2023
Statut: aheadofprint

Résumé

High-fat diet (HFD) feeding in rodents has become an essential tool to critically analyze and study the pathological effects of obesity, including mitochondrial dysfunction and insulin resistance. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) regulates cellular energy metabolism to influence insulin sensitivity, beyond its active role in stimulating mitochondrial biogenesis to facilitate skeletal muscle adaptations in response to HFD feeding. Here, some of the major electronic databases like PubMed, Embase, and Web of Science were accessed to update and critically discuss information on the potential role of PGC-1α during metabolic adaptations within the skeletal muscle in response to HFD feeding in rodents. In fact, available evidence suggests that partial exposure to HFD feeding (potentially during the early stages of disease development) is associated with impaired metabolic adaptations within the skeletal muscle, including mitochondrial dysfunction and reduced insulin sensitivity. In terms of implicated molecular mechanisms, these negative effects are partially associated with reduced activity of PGC-1α, together with the phosphorylation of protein kinase B and altered expression of genes involving nuclear respiratory factor 1 and mitochondrial transcription factor A within the skeletal muscle. Notably, metabolic abnormalities observed with chronic exposure to HFD (likely during the late stages of disease development) may potentially occur independently of PGC-1α regulation within the muscle of rodents. Summarized evidence suggests the causal relationship between PGC-1α regulation and effective modulations of mitochondrial biogenesis and metabolic flexibility during the different stages of disease development. It further indicates that prominent interventions like caloric restriction and physical exercise may affect PGC-1α regulation during effective modulation of metabolic processes.

Identifiants

pubmed: 38044359
doi: 10.1007/s00424-023-02890-0
pii: 10.1007/s00424-023-02890-0
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s).

Références

Abrigo J et al (2016) High fat diet-induced skeletal muscle wasting is decreased by mesenchymal stem cells administration: implications on oxidative stress, ubiquitin proteasome pathway activation, and myonuclear apoptosis. Oxid Med Cell Longev 2016:9047821
pubmed: 27579157 pmcid: 4992759 doi: 10.1155/2016/9047821
Affourtit C (2016) Mitochondrial involvement in skeletal muscle insulin resistance: a case of imbalanced bioenergetics. Biochim Biophys Acta 1857(10):1678–1693
pubmed: 27473535 doi: 10.1016/j.bbabio.2016.07.008
Akhmetov II, Rgozkin VA (2013) The role of PGC-1α in regulation of skeletal muscle metabolism. Fiziol Cheloveka 39(4):123–132
pubmed: 25486838
Altherr E et al (2021) Long-term high fat diet consumption reversibly alters feeding behavior via a dopamine-associated mechanism in mice. Behav Brain Res 414:113470
pubmed: 34280463 pmcid: 8380739 doi: 10.1016/j.bbr.2021.113470
Ato, S. et al (2021) Short-term high-fat diet induces muscle fiber type-selective anabolic resistance to resistance exercise. J Appl Physiol 131(2):442–453
pubmed: 34138646 doi: 10.1152/japplphysiol.00889.2020
Barbosa de Queiroz K et al (2017) Physical activity prevents alterations in mitochondrial ultrastructure and glucometabolic parameters in a high-sugar diet model. PLoS One 12(2):e0172103
pubmed: 28199417 pmcid: 5310863 doi: 10.1371/journal.pone.0172103
Barroso WA et al (2018) High-fat diet inhibits PGC-1α suppressive effect on NFκB signaling in hepatocytes. Eur J Nutr 57(5):1891–1900
pubmed: 28540526 doi: 10.1007/s00394-017-1472-5
Benton CR et al (2008) Modest PGC-1alpha overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria. J Biol Chem 283(7):4228–4240
pubmed: 18079123 doi: 10.1074/jbc.M704332200
Bonen A et al (2015) Extremely rapid increase in fatty acid transport and intramyocellular lipid accumulation but markedly delayed insulin resistance after high fat feeding in rats. Diabetologia 58(10):2381–2391
pubmed: 26197708 doi: 10.1007/s00125-015-3691-8
Branco RCS et al (2019) Protein malnutrition mitigates the effects of a high-fat diet on glucose homeostasis in mice. J Cell Physiol 234(5):6313–6323
pubmed: 30317568 doi: 10.1002/jcp.27361
Brunetta HS et al (2019) Decrement in resting and insulin-stimulated soleus muscle mitochondrial respiration is an early event in diet-induced obesity in mice. Exp Physiol 104(3):306–321
pubmed: 30578638 doi: 10.1113/EP087317
Cavaliere G et al (2016) Polyunsaturated fatty acids attenuate diet induced obesity and insulin resistance, modulating mitochondrial respiratory uncoupling in rat skeletal muscle. PLoS One 11(2):e0149033
pubmed: 26901315 pmcid: 4762694 doi: 10.1371/journal.pone.0149033
Chen XF et al (2018) Effect of puerarin in promoting fatty acid oxidation by increasing mitochondrial oxidative capacity and biogenesis in skeletal muscle in diabetic rats. Nutr Diabetes 8(1):1
pubmed: 29330446 pmcid: 5851431 doi: 10.1038/s41387-017-0009-6
Cheng CF, Ku HC, Lin H (2018) PGC-1α as a pivotal factor in lipid and metabolic regulation. Int J Mol Sci 19(11):3447
pubmed: 30400212 pmcid: 6274980 doi: 10.3390/ijms19113447
Christians JK et al (2019) Effects of high-fat diets on fetal growth in rodents: a systematic review. Reprod Biol Endocrinol 17(1):39
pubmed: 30992002 pmcid: 6469066 doi: 10.1186/s12958-019-0482-y
Christofides A et al (2021) The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism 114:154338
pubmed: 32791172 doi: 10.1016/j.metabol.2020.154338
Dinulovic I et al (2016) Muscle PGC-1α modulates satellite cell number and proliferation by remodeling the stem cell niche. Skelet Muscle 6(1):39
pubmed: 27908291 pmcid: 5134094 doi: 10.1186/s13395-016-0111-9
Falcão-Tebas F et al (2019) Four weeks of exercise early in life reprograms adult skeletal muscle insulin resistance caused by a paternal high-fat diet. J Physiol 597(1):121–136
pubmed: 30406963 doi: 10.1113/JP276386
Gandhi T, Patel A, Purohit M (2022) Chapter 11 - selection of experimental models mimicking human pathophysiology for diabetic microvascular complications. In: Sobti RC (ed) Advances in Animal Experimentation and Modeling. Academic Press, pp 137–177
doi: 10.1016/B978-0-323-90583-1.00034-9
Guillemot-Legris O et al (2016) High-fat diet feeding differentially affects the development of inflammation in the central nervous system. J Neuroinflammation 13(1):206
pubmed: 27566530 pmcid: 5002131 doi: 10.1186/s12974-016-0666-8
Hancock CR et al (2008) High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci U S A 105(22):7815–7820
pubmed: 18509063 pmcid: 2409421 doi: 10.1073/pnas.0802057105
Handschin C et al (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282(41):30014–30021
pubmed: 17702743 doi: 10.1074/jbc.M704817200
Hargreaves M, Spriet LL (2020) Skeletal muscle energy metabolism during exercise. Nat Metab 2(9):817–828
pubmed: 32747792 doi: 10.1038/s42255-020-0251-4
Henagan TM et al (2015) Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning. Br J Pharmacol 172(11):2782–2798
pubmed: 25559882 pmcid: 4439875 doi: 10.1111/bph.13058
Hong J et al (2016) Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget 7(35):56071–56082
pubmed: 27528227 pmcid: 5302897 doi: 10.18632/oncotarget.11267
Islam H, Hood DA, Gurd BJ (2020) Looking beyond PGC-1α: emerging regulators of exercise-induced skeletal muscle mitochondrial biogenesis and their activation by dietary compounds. Appl Physiol Nutr Metab 45(1):11–23
pubmed: 31158323 doi: 10.1139/apnm-2019-0069
Ismaeel A et al (2022) High-fat diet augments the effect of alcohol on skeletal muscle mitochondrial dysfunction in mice. Nutrients 14(5):1016
pubmed: 35267991 pmcid: 8912391 doi: 10.3390/nu14051016
Jaiswal N et al (2019) The role of skeletal muscle Akt in the regulation of muscle mass and glucose homeostasis. Mol Metab 28:1–13
pubmed: 31444134 pmcid: 6822261 doi: 10.1016/j.molmet.2019.08.001
Ju L et al (2017) Antioxidant MMCC ameliorates catch-up growth related metabolic dysfunction. Oncotarget 8(59):99931–99939
pubmed: 29245950 pmcid: 5725141 doi: 10.18632/oncotarget.21965
Kang C, Ji LL (2016) PGC-1α overexpression via local transfection attenuates mitophagy pathway in muscle disuse atrophy. Free Radic Biol Med 93:32–40
pubmed: 26746585 doi: 10.1016/j.freeradbiomed.2015.12.032
Kang C, Li Ji L (2012) Role of PGC-1α signaling in skeletal muscle health and disease. Ann N Y Acad Sci 1271(1):110–117
pubmed: 23050972 pmcid: 3499658 doi: 10.1111/j.1749-6632.2012.06738.x
Khutami C et al (2022) The effects of antioxidants from natural products on obesity, dyslipidemia, diabetes and their molecular signaling mechanism. Int J Mol Sci 23(4):2056
pubmed: 35216172 pmcid: 8875143 doi: 10.3390/ijms23042056
Kim J et al (2018a) NT-PGC-1α deficiency decreases mitochondrial FA oxidation in brown adipose tissue and alters substrate utilization in vivo. J Lipid Res 59(9):1660–1670
pubmed: 30026188 pmcid: 6121938 doi: 10.1194/jlr.M085647
Kim JS et al (2018b) Chicoric acid mitigates impaired insulin sensitivity by improving mitochondrial function. Biosci Biotechnol Biochem 82(7):1197–1206
pubmed: 29557265 doi: 10.1080/09168451.2018.1451742
Koh JH et al (2019a) AMPK and PPARβ positive feedback loop regulates endurance exercise training-mediated GLUT4 expression in skeletal muscle. Am J Physiol Endocrinol Metab 316(5):E931–e939
pubmed: 30888859 pmcid: 6580175 doi: 10.1152/ajpendo.00460.2018
Koh JH et al (2019b) TFAM enhances fat oxidation and attenuates high-fat diet-induced insulin resistance in skeletal muscle. Diabetes 68(8):1552–1564
pubmed: 31088855 pmcid: 6692815 doi: 10.2337/db19-0088
Koves TR et al (2005) Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem 280(39):33588–33598
pubmed: 16079133 doi: 10.1074/jbc.M507621200
Lanza IR et al (2012) Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 16(6):777–788
pubmed: 23217257 pmcid: 3544078 doi: 10.1016/j.cmet.2012.11.003
Lee H et al (2021) Mitochondrial dysfunction in skeletal muscle contributes to the development of acute insulin resistance in mice. Journal of Cachexia, Sarcopenia and Muscle 12(6):1925–1939
pubmed: 34605225 pmcid: 8718067 doi: 10.1002/jcsm.12794
Li J et al (2020) The molecular adaptive responses of skeletal muscle to high-intensity exercise/training and hypoxia. Antioxidants (Basel) 9(8):656
pubmed: 32722013 doi: 10.3390/antiox9080656
Li X et al (2016) Alternate-day high-fat diet induces an increase in mitochondrial enzyme activities and protein content in rat skeletal muscle. Nutrients 8(4):203
pubmed: 27058555 pmcid: 4848672 doi: 10.3390/nu8040203
Liang H, Ward WF (2006) PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30(4):145–151
pubmed: 17108241 doi: 10.1152/advan.00052.2006
Liu R et al (2017) Leucine supplementation differently modulates branched-chain amino acid catabolism, mitochondrial function and metabolic profiles at the different stage of insulin resistance in rats on high-fat diet. Nutrients 9(6):565
pubmed: 28574481 pmcid: 5490544 doi: 10.3390/nu9060565
Long YC, Zierath JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116(7):1776–1783
pubmed: 16823475 pmcid: 1483147 doi: 10.1172/JCI29044
Longato L et al (2012) Insulin resistance, ceramide accumulation, and endoplasmic reticulum stress in human chronic alcohol-related liver disease. Oxid Med Cell Longev 2012:479348
pubmed: 22577490 pmcid: 3347750 doi: 10.1155/2012/479348
Łukaszuk B et al (2015) The role of PGC-1α in the development of insulin resistance in skeletal muscle - revisited. Cell Physiol Biochem 37(6):2288–2296
pubmed: 26625097 doi: 10.1159/000438584
Luquet S et al (2003) Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. Faseb j 17(15):2299–2301
pubmed: 14525942 doi: 10.1096/fj.03-0269fje
Martins AR et al (2018) Attenuation of obesity and insulin resistance by fish oil supplementation is associated with improved skeletal muscle mitochondrial function in mice fed a high-fat diet. J Nutr Biochem 55:76–88
pubmed: 29413492 doi: 10.1016/j.jnutbio.2017.11.012
Mazibuko-Mbeje SE et al (2021) Antimycin A-induced mitochondrial dysfunction is consistent with impaired insulin signaling in cultured skeletal muscle cells. Toxicol In Vitro 76:105224
pubmed: 34302933 doi: 10.1016/j.tiv.2021.105224
Mengeste AM, Rustan AC, Lund J (2021) Skeletal muscle energy metabolism in obesity. Obesity (Silver Spring) 29(10):1582–1595
pubmed: 34464025 doi: 10.1002/oby.23227
Menshikova EV et al (2006) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 61(6):534–540
pubmed: 16799133 doi: 10.1093/gerona/61.6.534
Michael LF et al (2001) Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci U S A 98(7):3820–3825
pubmed: 11274399 pmcid: 31136 doi: 10.1073/pnas.061035098
Miotto PM, LeBlanc PJ, Holloway G (2018) High-fat diet causes mitochondrial dysfunction as a result of impaired ADP sensitivity. Diabetes 67(11):2199–2205
pubmed: 29980534 doi: 10.2337/db18-0417
Mkandla Z et al (2019) Impaired glucose tolerance is associated with enhanced platelet-monocyte aggregation in short-term high-fat diet-fed mice. Nutrients 11(11):2695
pubmed: 31703365 pmcid: 6893711 doi: 10.3390/nu11112695
Mootha VK et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273
pubmed: 12808457 doi: 10.1038/ng1180
Mormeneo E et al (2012) PGC-1α induces mitochondrial and myokine transcriptional programs and lipid droplet and glycogen accumulation in cultured human skeletal muscle cells. PLoS One 7(1):e29985
pubmed: 22272266 pmcid: 3260188 doi: 10.1371/journal.pone.0029985
Moughaizel M et al (2022) Long-term high-fructose high-fat diet feeding elicits insulin resistance, exacerbates dyslipidemia and induces gut microbiota dysbiosis in WHHL rabbits. PLoS One 17(2):e0264215
pubmed: 35196347 pmcid: 8865649 doi: 10.1371/journal.pone.0264215
Mthembu SXH et al (2021a) The potential role of polyphenols in modulating mitochondrial bioenergetics within the skeletal muscle: a systematic review of preclinical models. Molecules 26(9):2791
pubmed: 34068459 pmcid: 8125960 doi: 10.3390/molecules26092791
Mthembu SXH et al (2021b) Rooibos flavonoids, aspalathin, isoorientin, and orientin ameliorate antimycin a-induced mitochondrial dysfunction by improving mitochondrial bioenergetics in cultured skeletal muscle cells. Molecules 26(20):6289
pubmed: 34684871 pmcid: 8539189 doi: 10.3390/molecules26206289
Mthembu SXH et al (2022a) Experimental models of lipid overload and their relevance in understanding skeletal muscle insulin resistance and pathological changes in mitochondrial oxidative capacity. Biochimie 196:182–193
pubmed: 34563603 doi: 10.1016/j.biochi.2021.09.010
Mthembu SXH et al (2022b) Impact of physical exercise and caloric restriction in patients with type 2 diabetes: skeletal muscle insulin resistance and mitochondrial dysfunction as ideal therapeutic targets. Life Sci 297:120467
pubmed: 35271881 doi: 10.1016/j.lfs.2022.120467
Nikawa T, Ulla A, Sakakibara I (2021) Polyphenols and their effects on muscle atrophy and muscle health. Molecules 26(16):4887
pubmed: 34443483 pmcid: 8398525 doi: 10.3390/molecules26164887
Pattanakuhar S et al (2019) Combined exercise and calorie restriction therapies restore contractile and mitochondrial functions in skeletal muscle of obese-insulin resistant rats. Nutrition 62:74–84
pubmed: 30856398 doi: 10.1016/j.nut.2018.11.031
Perry CGR, Hawley JA (2018) Molecular basis of exercise-induced skeletal muscle mitochondrial biogenesis: historical advances, current knowledge, and future challenges. Cold Spring Harb Perspect Med 8(9):a029686
pubmed: 28507194 pmcid: 6120690 doi: 10.1101/cshperspect.a029686
Petrocelli JJ, Drummond MJ (2020) PGC-1α-targeted therapeutic approaches to enhance muscle recovery in aging. Int J Environ Res Public Health 17(22):8650
pubmed: 33233350 pmcid: 7700690 doi: 10.3390/ijerph17228650
Philp A et al (2010) Pyruvate suppresses PGC1alpha expression and substrate utilization despite increased respiratory chain content in C2C12 myotubes. Am J Physiol Cell Physiol 299(2):C240–C250
pubmed: 20410436 pmcid: 2928631 doi: 10.1152/ajpcell.00438.2009
Pileggi CA et al (2016) Maternal high fat diet alters skeletal muscle mitochondrial catalytic activity in adult male rat offspring. Front Physiol 7:546
pubmed: 27917127 pmcid: 5114294 doi: 10.3389/fphys.2016.00546
Popov DV et al (2015) Regulation of PGC-1α isoform expression in skeletal muscles. Acta Naturae 7(1):48–59
pubmed: 25927001 pmcid: 4410395 doi: 10.32607/20758251-2015-7-1-48-59
Ruderman NB et al (2010) AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 298(4):E751–E760
pubmed: 20103737 pmcid: 2853213 doi: 10.1152/ajpendo.00745.2009
Samuel VT, Shulman GI (2016) The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 126(1):12–22
pubmed: 26727229 pmcid: 4701542 doi: 10.1172/JCI77812
Sczelecki S et al (2014) Loss of Pgc-1α expression in aging mouse muscle potentiates glucose intolerance and systemic inflammation. Am J Physiol Endocrinol Metab 306(2):E157–E167
pubmed: 24280126 doi: 10.1152/ajpendo.00578.2013
Shen S et al (2019) Myricanol modulates skeletal muscle-adipose tissue crosstalk to alleviate high-fat diet-induced obesity and insulin resistance. Br J Pharmacol 176(20):3983–4001
pubmed: 31339170 pmcid: 6811775 doi: 10.1111/bph.14802
Sithandiwe Eunice M-M et al (2018) In: Kunihiro S (ed) The role of glucose and fatty acid metabolism in the development of insulin resistance in skeletal muscle, in muscle cell and tissue. Rijeka, IntechOpen, p 2
Sparks LM et al (2005) A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 54(7):1926–1933
pubmed: 15983191 doi: 10.2337/diabetes.54.7.1926
Speakman JR (2019) Use of high-fat diets to study rodent obesity as a model of human obesity. Int J Obes (Lond) 43(8):1491–1492
pubmed: 30967607 doi: 10.1038/s41366-019-0363-7
Turcotte LP, Fisher JS (2008) Skeletal muscle insulin resistance: roles of fatty acid metabolism and exercise. Phys Ther 88(11):1279–1296
pubmed: 18801860 pmcid: 2579902 doi: 10.2522/ptj.20080018
Turner N et al (2007) Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56(8):2085–2092
pubmed: 17519422 doi: 10.2337/db07-0093
Wadden TA et al (2012) Lifestyle modification for obesity: new developments in diet, physical activity, and behavior therapy. Circulation 125(9):1157–1170
pubmed: 22392863 pmcid: 3313649 doi: 10.1161/CIRCULATIONAHA.111.039453
Wang X et al (2016) O-GlcNAcase deficiency suppresses skeletal myogenesis and insulin sensitivity in mice through the modulation of mitochondrial homeostasis. Diabetologia 59(6):1287–1296
pubmed: 26993634 doi: 10.1007/s00125-016-3919-2
Xu D et al (2019) Mitochondrial dysfunction and inhibition of myoblast differentiation in mice with high-fat-diet-induced pre-diabetes. J Cell Physiol 234(5):7510–7523
pubmed: 30362548 doi: 10.1002/jcp.27512
Yeo D et al (2022) Protective effects of extra virgin olive oil and exercise training on rat skeletal muscle against high-fat diet feeding. J Nutr Biochem 100:108902
pubmed: 34748920 doi: 10.1016/j.jnutbio.2021.108902
Yuan D et al (2019) PGC-1α activation: a therapeutic target for type 2 diabetes? Eat Weight Disord 24(3):385–395
pubmed: 30498989 doi: 10.1007/s40519-018-0622-y
Zhang HH et al (2015) SIRT1 overexpression in skeletal muscle in vivo induces increased insulin sensitivity and enhanced complex I but not complex II-V functions in individual subsarcolemmal and intermyofibrillar mitochondria. J Physiol Biochem 71(2):177–190
pubmed: 25782776 doi: 10.1007/s13105-015-0396-x
Zhang J et al (2020) Mitochondrial sirtuin 3: new emerging biological function and therapeutic target. Theranostics 10(18):8315–8342
pubmed: 32724473 pmcid: 7381741 doi: 10.7150/thno.45922
Zheng L et al (2020) High-intensity interval training restores glycolipid metabolism and mitochondrial function in skeletal muscle of mice with type 2 diabetes. Front Endocrinol (Lausanne) 11:561
pubmed: 32922365 doi: 10.3389/fendo.2020.00561
Ziqubu K et al (2023a) Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism 150:155709
pubmed: 37866810 doi: 10.1016/j.metabol.2023.155709
Ziqubu K et al (2023b) Anti-obesity effects of metformin: a scoping review evaluating the feasibility of brown adipose tissue as a therapeutic target. Int J Mol Sci 24(3)

Auteurs

Sinenhlanhla X H Mthembu (SXH)

Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa.
Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa.

Sithandiwe E Mazibuko-Mbeje (SE)

Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa.
Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy.

Khanyisani Ziqubu (K)

Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa.

Ndivhuwo Muvhulawa (N)

Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa.

Fabio Marcheggiani (F)

Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy.

Ilenia Cirilli (I)

Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, 60131, Ancona, Italy.

Bongani B Nkambule (BB)

School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.

Christo J F Muller (CJF)

Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa.
Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa.
Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa.

Albertus K Basson (AK)

Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa.

Luca Tiano (L)

Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy.

Phiwayinkosi V Dludla (PV)

Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa. pdludla@mrc.ac.za.
Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa. pdludla@mrc.ac.za.
Cochrane South Africa, South African Medical Research Council, Tygerberg, 7505, South Africa. pdludla@mrc.ac.za.

Classifications MeSH