Quantified instant conjugation of peptides on a nanogold surface for tunable ice recrystallization inhibition.
Journal
Nanoscale
ISSN: 2040-3372
Titre abrégé: Nanoscale
Pays: England
ID NLM: 101525249
Informations de publication
Date de publication:
14 Dec 2023
14 Dec 2023
Historique:
pubmed:
4
12
2023
medline:
4
12
2023
entrez:
4
12
2023
Statut:
epublish
Résumé
The adverse effects of recrystallization limit the application of cryopreservation in many fields. Peptide-based materials play an essential role in the antifreezing area because of their excellent biocompatibility and abundant ice-binding sites. Peptide-gold nanoparticle conjugates can effectively reduce time and material costs through metal-thiol interactions, but controlled modification remains an outstanding issue, which makes it difficult to elucidate the antifreezing effects of antifreeze peptides at different densities and lengths. In this study, we developed an instant peptide capping on gold nanoparticles with butanol-assisted dehydration and provided a controllable quantitative coupling within a certain range. This chemical dehydration makes it possible to fabricate peptide-gold nanoparticle conjugates in large batches at minute levels. Based on this, the influence of the peptide density and sequence length on the antifreezing behaviors of the conjugates was investigated. The results evidenced that the antifreezing property of the flexible peptide conjugated on a rigid core is related to both the density and length of the peptide. In a certain range, the density is proportional to the antifreeze, while the length is negatively correlated with it. We proposed a rapidly controllable method for synthesizing peptide-gold nanoparticle conjugates, which may provide a universal approach for the development of subsequent recrystallization-inhibiting materials.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM