Assessment of copper nanoparticles treatment on male accessory reproductive organs and epididymis in a mouse model: A morphological and biochemical study.
copper nanoparticles
epididymis
mice
prostate
seminal vesicle
vas deferens
Journal
Journal of experimental zoology. Part A, Ecological and integrative physiology
ISSN: 2471-5646
Titre abrégé: J Exp Zool A Ecol Integr Physiol
Pays: United States
ID NLM: 101710204
Informations de publication
Date de publication:
04 Dec 2023
04 Dec 2023
Historique:
revised:
02
11
2023
received:
23
08
2023
accepted:
21
11
2023
medline:
4
12
2023
pubmed:
4
12
2023
entrez:
4
12
2023
Statut:
aheadofprint
Résumé
Although the usage of nanoparticles has expanded substantially in recent years, and it causes the detrimental effect on the various organs. CuNPs are widely used in commercial applications. There has been minimal investigation into the possibly harmful effects of CuNPs on the accessory reproductive organs. Thus, the present study aimed to investigate the effect of CuNPs on the male reproductive organs like epididymis, vas deferens, seminal vesicle and prostate of mice. The mice were exposed orally to CuNPs at three doses 10, 100, and 200 mg/kg for 70 days. Our results showed that the organs index of only vas deferens and prostate reduced at 200 mg/kg group compared to the control. However, the histological study showed degenerative changes in the epididymis at higher doses like distortion in the tubules. The sperm parameters were also decreased in the 200 mg/kg CuNPs group. The vas deferens in 100 and 200 mg/kg treatment groups exhibited detachment of luminal epithelium and with a few or no spermatozoa in the higher dose group. The seminal vesicle and prostate also showed degenerative changes like atrophy, hyperplasia, and scant secretary materials. Furthermore, CuNPs also increased the oxidative stress and decreased antioxidant enzymes in vas deferens and seminal vesicles at higher dose. Caput epididymis showed decreased GPx enzymes in all the groups. However, MDA and GPx in corpus, cauda, and prostate did not show any significant variations among all the groups. In conclusion, our results suggest that CuNPs can manifest the detrimental effect of the male accessory organs and epididymis in a dose and tissue dependent manner. Since, detrimental effects were observed only at higher dose, thus, uses of CuNPs would be safe for reproductive organs at lower dose, even for the prolonged duration.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Department of Science and Technology, Ministry of Science and Technology, India
Informations de copyright
© 2023 Wiley Periodicals LLC.
Références
Aboul-Soud, M. A. M., M. al-Othman, A., E. el-Desoky, G., A. al-Othman, Z., Yusuf, K., Ahmad, J., & A. al-Khedhairy, A. (2011). Hepatoprotective effects of vitamin E/selenium against malathion-induced injuries on the antioxidant status and apoptosis-related gene expression in rats. The Journal of Toxicological Sciences, 36(3), 285-296.
Al-Bairuty, G. A., Shaw, B. J., Handy, R. D., & Henry, T. B. (2013). Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 126, 104-115.
Al-Bairuty, G. A., & Taha, M. N. (2016). Effects of copper nanoparticles on reproductive organs of male albino rats. International Journal for Sciences and Technology, 11(3), 17-24.
AL-Musawi, M. M. S., Al-Shmgani, H., & Al-Bairuty, G. A. (2022). Histopathological and biochemical comparative study of copper oxide nanoparticles and copper sulphate toxicity in male albino mice reproductive system. International Journal of Biomaterials, 2022, 1-12.
Anima, B., Mondal, P., Gurusubramanian, G., & Roy, V. K. (2023). Mechanistic study of copper nanoparticle (CuNP) toxicity on the mouse uterus via apelin signaling. Environmental Science and Pollution Research, 30(38), 88824-88841.
Azouz, R. A., Korany, R. M. S., & Noshy, P. A. (2023). Silica nanoparticle-induced reproductive toxicity in male albino rats via testicular apoptosis and oxidative stress. Biological Trace Element Research, 201(4), 1816-1824.
Bai, W., Tian, W., Zhang, Z., He, X., Ma, Y., Liu, N., & Chai, Z. (2010). Effects of copper nanoparticles on the development of zebrafish embryos. Journal of Nanoscience and Nanotechnology, 10(12), 8670-8676.
Breton, S., Nair, A. V., & Battistone, M. A. (2019). Epithelial dynamics in the epididymis: Role in the maturation, protection, and storage of spermatozoa. Andrology, 7(5), 631-643. https://doi.org/10.1111/andr.12632
Chen, Z. L., Huang, X. B., Suo, J. P., Li, J., & Sun, L. (2010). The contraceptive effect of a novel filtering-type nano-copper complex/polymer composites intra-vas device on male animals. International Journal of Andrology, 33(6), 810-817.
Cornwall, G. A. (2008). New insights into epididymal biology and function. Human Reproduction Update, 15(2), 213-227. https://doi.org/10.1093/humupd/dmn055
Dabirian, E., Hajipour, A., Mehrizi, A. A., Karaman, C., Karimi, F., Loke-Show, P., & Karaman, O. (2023). Nanoparticles application on fuel production from biological resources: A review. Fuel, 331, 125682.
De, M., Ghosh, P. S., & Rotello, V. M. (2008). Applications of nanoparticles in biology. Advanced Materials, 20(22), 4225-4241.
Falvo, S., Latino, D., Santillo, A., Chieffi Baccari, G., Senese, R., Nuzzolillo, F., & Di Fiore, M. M. (2023). Effects of a high-fat diet on rat epididymis. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 339, 535-544.
Flannigan, R., & Goldstein, M. (2018). Vas deferens. Encyclopedia of Reproduction, 305-308.
Gomes, T., Pinheiro, J. P., Cancio, I., Pereira, C. G., Cardoso, C., & Bebianno, M. J. (2011). Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environmental Science & Technology, 45(21), 9356-9362.
Hadwan, M. H. (2018). Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochemistry, 19(1), 7.
Jeremy, M., Gurusubramanian, G., & Roy, V. K. (2017). Localization pattern of visfatin (NAMPT) in d-galactose induced aged rat testis. Annals of Anatomy-Anatomischer Anzeiger, 211, 46-54.
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908-931.
Lindholmer, C., Carlstróm, A., & Eliasson, R. (1974). Occurrence and origin of proteins in human seminal plasma with special reference to albumin. Andrologia, 6, 181-196.
Luo, J., Hao, S., Zhao, L., Shi, F., Ye, G., He, C., Lin, J., Zhang, W., Liang, H., Wang, X., Guo, H., He, R., Tang, H., & Li, Y. (2020). Oral exposure of pregnant rats to copper nanoparticles caused nutritional imbalance and liver dysfunction in fetus. Ecotoxicology and Environmental Safety, 206, 111206.
Mesallam, D. I. A., Deraz, R. H., Abdel Aal, S. M., & Ahmed, S. M. (2019). Toxicity of subacute oral zinc oxide nanoparticles on testes and prostate of adult albino rats and role of recovery. Journal of Histology and Histopathology, 6(2), 2.
Morgan, A., El-hamid, M., & Noshy, P. (2015). Reproductive toxicity investigation of titanium dioxide nanoparticles in male albino rats. World Journal of Pharmacy Pharmaceutical Science, 4, 34-49.
Nicy, V., Das, M., Gurusubramanian, G., Mondal, P., & Roy, V. K. (2022). Treatment of copper nanoparticles (CuNPs) for two spermatogenic cycles impairs testicular activity via down-regulating steroid receptors and inhibition of germ cell proliferation in a mice model. Nanotoxicology, 16(5), 658-678.
Noda, T., & Ikawa, M. (2019). Physiological function of seminal vesicle secretions on male fecundity. Reproductive Medicine and Biology, 18(3), 241-246.
O'Flaherty, C. (2019). Orchestrating the antioxidant defenses in the epididymis. Andrology, 7(5), 662-668.
Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358.
Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158-169.
Pang, S. F., Chow, P. H., & Wong, T. M. (1979). The role of the seminal vesicles, coagulating glands and prostate glands on the fertility and fecundity of mice. Reproduction, 56(1), 129-132.
Park, K. H., Kim, B. J., Kang, J., Nam, T. S., Lim, J. M., Kim, H. T., Park, J. K., Kim, Y. G., Chae, S. W., & Kim, U. H. (2011). Ca2+ signaling tools acquired from prostasomes are required for progesterone-induced sperm motility. Science Signaling, 4(173):ra31.
Peitz, B., & Olds-Clarke, P. (1986). Effects of seminal vesicle removal on fertility and uterine sperm motility in the house mouse. Biology of Reproduction, 35, 608-617.
Şahin, T. D., Gocmez, S. S., Duruksu, G., Yazir, Y., & Utkan, T. (2020). Infliximab prevents dysfunction of the vas deferens by suppressing inflammation and oxidative stress in rats with chronic stress. Life Sciences, 250, 117545.
Salman, R. A. (2017). The influence of ZnO NPs on reproductive system tissues of albino male mice. Histopathological study. International Journal of Scientific Research, 6(7), 2021-2025.
Skinner, M. K. (2018). Encyclopedia of reproduction. Academic Press.
Sullivan, R., & Belleannée, C (2018). Cell biology of the epididymis. In Encyclopedia of reproduction (pp. 286-291). Academic Press.
Sundarraj, K., Raghunath, A., Panneerselvam, L., & Perumal, E. (2017). Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs. Toxicology and Applied Pharmacology, 317, 12-24.
Thakur, M., Gupta, H., Singh, D., Mohanty, I. R., Maheswari, U., Vanage, G., & Joshi, D. (2014). Histopathological and ultra structural effects of nanoparticles on rat testis following 90 days (Chronic study) of repeated oral administration. Journal of Nanobiotechnology, 12(1), 42.
Tso, W. W., & Lee, W. M. (1980). Seminal plasma and progressive motility of boar spermatozoa. International Journal of Andrology, 3, 243-250.
Turner, T. (2009). The epididymis and accessory sex organs. In L. Lipshultz, S. Howards, & C. Niederberger (Eds.), Infertility in the male (pp. 90-103). Cambridge University Press & Assessment.
Umer, A., Naveed, S., Ramzan, N., & Rafique, M. S. (2012). Selection of a suitable method for the synthesis of copper nanoparticles. NANO, 07(05), 1230005.
Vassal, M., Rebelo, S., & Pereira, M. L. (2021). Metal oxide nanoparticles: Evidence of adverse effects on the male reproductive system. International Journal of Molecular Sciences, 22(15), 8061.
Whitney, K. M. (2018). Male accessory sex glands. Boorman's Pathology of the Rat (pp. 579-587). Academic Pres.
Yang, L., Wei, Y., Gao, S., Wang, Q., Chen, J., Tang, B., & Bian, X. (2022). Effect of copper nanoparticles and ions on epididymis and spermatozoa viability of Chinese soft-shelled turtles Pelodiscus sinensis. Coatings, 12(2), 110.
Zhang, C. H., Wang, Y., Sun, Q. Q., Xia, L. L., Hu, J. J., Cheng, K., Wang, X., Fu, X. X., & Gu, H. (2018). Copper nanoparticles show obvious in vitro and in vivo reproductive toxicity via ERK mediated signaling pathway in female mice. International Journal of Biological Sciences, 14(13), 1834-1844.