A Functional Hydrogel Bead-Based High-Throughput Screening System for Mammalian Cells with Enhanced Secretion of Therapeutic Antibodies.
antibody
fluorescence-activated droplet sorting
high-throughput screening
hydrogel beads
mammalian cell
therapeutic protein
Journal
ACS biomaterials science & engineering
ISSN: 2373-9878
Titre abrégé: ACS Biomater Sci Eng
Pays: United States
ID NLM: 101654670
Informations de publication
Date de publication:
04 Dec 2023
04 Dec 2023
Historique:
medline:
4
12
2023
pubmed:
4
12
2023
entrez:
4
12
2023
Statut:
aheadofprint
Résumé
Droplet-based high-throughput screening systems are an emerging technology that provides a quick test to screen millions of cells with distinctive characteristics. Biopharmaceuticals, specifically therapeutic proteins, are produced by culturing cells that secrete heterologous recombinant proteins with different populations and expression levels; therefore, a technology to discriminate cells that produce more target proteins is needed. Here, we present a droplet-based microfluidic strategy for encapsulating, screening, and selecting target cells with redox-responsive hydrogel beads (HBs). As a proof-of-concept study, we demonstrate the enrichment of hybridoma cells with enhanced capability of antibody secretion using horseradish peroxidase (HRP)-catalyzed hydrogelation of tetra-thiolate poly(ethylene glycol); hybridoma cells were encapsulated in disulfide-bonded HBs. Recombinant protein G or protein M with a C-terminal cysteine residue was installed in the HBs via disulfide bonding to capture antibodies secreted from the cells. HBs were fluorescently stained by adding the protein L-HRP conjugate using a tyramide signal amplification system. HBs were then separated by fluorescence-activated droplet sorting and degraded by reducing the disulfide bonds to recover the target cells. Finally, we succeeded in the selection of hybridoma cells with enhanced antibody secretion, indicating the potential of this system in the therapeutic protein production.
Identifiants
pubmed: 38048166
doi: 10.1021/acsbiomaterials.3c01386
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM