Monogenic conditions and central nervous system anomalies: A prospective study, systematic review and meta-analysis.


Journal

Prenatal diagnosis
ISSN: 1097-0223
Titre abrégé: Prenat Diagn
Pays: England
ID NLM: 8106540

Informations de publication

Date de publication:
06 Dec 2023
Historique:
revised: 16 10 2023
received: 20 09 2023
accepted: 27 10 2023
medline: 6 12 2023
pubmed: 6 12 2023
entrez: 6 12 2023
Statut: aheadofprint

Résumé

Determine the incremental diagnostic yield of prenatal exome sequencing (pES) over chromosome microarray (CMA) or G-banding karyotype in fetuses with central nervous system (CNS) abnormalities. Data were collected via electronic searches from January 2010 to April 2022 in MEDLINE, Cochrane, Web of Science and EMBASE. The NHS England prenatal exome cohort was also included. Incremental yield was calculated as a pooled value using a random-effects model. Thirty studies were included (n = 1583 cases). The incremental yield with pES for any CNS anomaly was 32% [95%CI 27%-36%; I Prenatal exome sequencing provides a high incremental diagnostic yield in fetuses with CNS abnormalities with optimal yields in cases with multiple CNS anomalies, particularly those affecting the midline, posterior fossa and cortex.

Identifiants

pubmed: 38054560
doi: 10.1002/pd.6466
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023 The Authors. Prenatal Diagnosis published by John Wiley & Sons Ltd.

Références

NHS Digital 2022. NCARDRS Congenital Anomaly Official Statistics Report; 2020. Available at URL: NCARDRS Congenital Anomaly Official Statistics Report, 2020 - NDRS (digital.nhs.uk). Accessed 08/12/22.
Onkar D, Onkar P, Mitra K. Evaluation of fetal central nervous system anomalies by ultrasound and its anatomical co-relation. J Clin Diagn Res. 2014;8(6):Ac05-7. https://doi.org/10.7860/jcdr/2014/8052.4437
European Surveillance of Congenital Anomalies (EUROCAT). Cases and prevalence (per 10,000 births) for all full member registries from 2013-2019, prevalence tables. Available at URL: Prevalence charts and tables | EU RD Platform (europa.eu)
Mone F, Subieh HA, Doyle S, et al. Evolving fetal phenotypes and clinical impact of progressive prenatal exome sequencing pathways: cohort study. Ultrasound Obstet Gynaecol. 2022;59(6):723-730. https://doi.org/10.1002/uog.24842
Dempsey E, Haworth A, Ive L, et al. A report on the impact of rapid prenatal exome sequencing on the clinical management of 52 ongoing pregnancies: a retrospective review. BJOG. 2021;128(6):1012-1019. https://doi.org/10.1111/1471-0528.16546
de Wit MC, Srebniak MI, Govaerts LC, Van Opstal D, Galjaard RJH, Go ATJI. Additional value of prenatal genomic array testing in fetuses with isolated structural ultrasound abnormalities and a normal karyotype: a systematic review of the literature. Ultrasound Obstet Gynaecol. 2014;43(2):139-146. https://doi.org/10.1002/uog.12575
Fu F, Li R, Li Y, et al. Whole exome sequencing as a diagnostic adjunct to clinical testing in fetuses with structural abnormalities. Ultrasound Obstet Gynaecol. 2018;51(4):493-502. https://doi.org/10.1002/uog.18915
Song T, Xu Y, Li Y, et al. Detection of submicroscopic chromosomal aberrations by chromosome microarray analysis for the prenatal diagnosis of central nervous system abnormalities. J Clin Lab Anal. 2020;34(10):e23434. https://doi.org/10.1002/jcla.23434
Yaron Y, Ofen Glassnet V, Mory A, et al. Exome sequencing as first-tier test for fetuses with severe central nervous system structural anomalies. Ultrasound Obstet Gynaecol. 2022;60(1):59-67. https://doi.org/10.1002/uog.24885
Baptiste C, Mellis R, Aggarwal V, et al. Fetal central nervous system anomalies: when should we offer exome sequencing? Prenat Diagn. 2022;42(6):736-743. https://doi.org/10.1002/pd.6145
R21 criteria - NHS England. Rapid Exome Sequencing Service for Fetal Anomalies Testing; 2021:376. Accessed from 377. https://labs.gosh.nhs.uk/media/1396340/rapid_prenatal_exome_sequencing_r21_f378aq_v1
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLOS Med. 2009;6(7):e10000100. https://doi.org/10.1371/journal.pmed.1000100
Stroup DF, Berline JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008-2012. https://doi.org/10.1001/jama.283.15.2008
PROSPERO Systematic Review Registry. www.crd.york.ac.uk/PROSPERO/
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants@ a joint consensus recommendation of the American College of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17(5):405-424. https://doi.org/10.1038/gim.2015.30
Bossuyt PM, Reitsma JB, Burns DE, et al. Standards for Reporting of Diagnostic Accuracy. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Standards for Reporting of Diagnostic Accuracy. Clin Chem. 2003;49(1):1-6. https://doi.org/10.1373/49.1.1
Cater SW, Boyd BK, Ghate SV. Abnormalities of the fetal central nervous system: prenatal US diagnosis with postnatal correlation. Radiographics. 2020;40(5):1458-1472. https://doi.org/10.1148/rg.2020200034
Desikan RS, Barkovich AJ. Malformations of cortical development. Ann Neurol. 2016;80(6):797-810. https://doi.org/10.1002/ana.24793
Mone F, Eberhardt RY, Morris RK, et al. Congenital heart disease and the Diagnostic yield with Exome sequencing (CODE) study: prospective cohort study and systematic review. Ultrasound Obstet Gynaecol. 2020;57(1):43-51. https://doi.org/10.1002/uog.22072
Mone F, Eberhardt RY, Hurles ME, et al. Fetal hydrops and the incremental yield of Next-generation sequencing over standard prenatal Diagnostic testing (FIND) study: prospective cohort study and meta-analysis. Ultrasound Obstet Gynaecol. 2021;58(4):509-518. https://doi.org/10.1002/uog.23652
Mellis R, Oprych K, Scotchman E, Hill M, Chitty LS. Diagnostic yield of exome sequencing for prenatal diagnosis of fetal structural anomalies: a systematic review and meta-analysis. Prenat Diagn. 2022;42(6):662-685. https://doi.org/10.1002/pd.6115
Boissel S, Fallet-Bianco C, Chitayat D, et al. Genomic study of severe fetal anomalies and discovery of GREB1L mutations in renal agenesis. Genet Med. 2018;20(7):745-753. https://doi.org/10.1038/gim.2017.173
Chen M, Chen J, Wang C, et al. Clinical application of medical exome sequencing for prenatal diagnosis of fetal structural anomalies. EJ Obstet Gynaecol Reprod Bio. 2020;251:119-124. https://doi.org/10.1016/j.ejogrb.2020.04.033
Daum H, Meiner V, Elpeleg O, Harel T. Fetal exome sequencing yield and limitations in a tertiary referral centre. Ultrasound Obstet Gynaecol. 2019;53(1):80-86. https://doi.org/10.1002/uog.19168
De Koning M, Hoffer M, Nibbeling E, et al. Prenatal exome sequencing: a useful tool for the fetal neurologist. Clin Genet. 2022;101(1):65-77. https://doi.org/10.1111/cge.14070
Deden C, Neveling K, Zafeiropopoulou D, et al. Rapid whole exome sequencing in pregnancies to identify the underlying genetic cause in fetuses with congenital anomalies detected by ultrasound imaging. Prenat Diagn. 2020;40(8):972-983. https://doi.org/10.1002/pd.5717
Diderich K, Romijn K, Joosten M, et al. The potential diagnostic yield of whole exome sequencing in pregnancies complicated by fetal ultrasound anomalies. Acta Obstet Gynecol Scand. 2021;100(6):1106-1115. https://doi.org/10.1111/aogs.14053
Dufke A, Hoopman M, Waldmüller S, et al. A single center experience of prenatal parent-fetus trio exome sequencing for pregnancies with congenital anomalies. Prenat Diagn. 2022;42(7):901-910. https://doi.org/10.1002/pd.6170
Gabriel H, Korinth D, Ritthaler M, et al. Trio exome sequencing is highly relevant in prenatal diagnostics. Prenat Diagn. 2022;42(7):845-851. https://doi.org/10.1002/pd.6081
Greenbaum L, Pode-Shakked B, Eisenberg-Barzilai S, et al. Evaluation of diagnostic yield in fetal whole-exome sequencing: a report on 45 consecutive families. Front Genet. 2019;10:425. https://doi.org/10.3389/fgene.2019.00425
Heide S, Spentchian M, Valence S, et al. Prenatal exome sequencing in 65 fetuses with abnormality of the corpus callosum: contribution to further diagnostic delineation. Genet Med. 2020;22(11):1887-1891. https://doi.org/10.1038/s41436-020-0872-8
Laio Y, Yang Y, Wen H, et al. Abnormal Sylvian fissure at 20-30 weeks as indicator of malformations of cortical development: role of prenatal whole-genome sequencing. Ultrasound Obstet gynaecol. 2022;59:550-562.
Lei L, Zhou L, Xiong J.-J, et al. Whole-exome sequencing increases the diagnostic rate for prenatal fetal structural anomalies. J Med Genet. 2021;64(9):104288. https://doi.org/10.1016/j.ejmg.2021.104288
Lei T.-Y, Qin S, Fu F, et al. Prenatal exome sequencing in fetuses with callosal anomalies. Prenat Diagn. 2022;42(6):744-752. https://doi.org/10.1002/pd.6107
Li L, Fu F, Li R, et al. Genetic tests aid in counselling of fetuses with cerebellar vermis defects. Prenat Diagn. 2020;40(10):1228-1238. https://doi.org/10.1002/pd.5732
Normand E, Braxton A, Nassef S, et al. Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder. Genome Med. 2018;10(1):74. https://doi.org/10.1186/s13073-018-0582-x
Pauta M, Campos B, Segura-Puimedon M, et al. Next-generation sequencing gene panels and “solo” clinical exome sequencing applied in structurally abnormal fetuses. Fetal Diagn Ther. 2021;48(10):746-756. https://doi.org/10.1159/000519701
Qi Q, Jiang Y, Zhou X, et al. Simultaneous detection of CNVs and SNVs improves the diagnostic yield of fetuses with ultrasound anomalies and normal karyotypes. Genes. 2020;11(12):1397. https://doi.org/10.3390/genes11121397
R21 rapid prenatal exome sequencing. Accessed from: https://www.genomicseducation.hee.nhs.uk/genotes/knowledge-hub/r21-rapid-prenatal-exome-sequencing/ 2023
Saini N, Venkatapuram VS, Vineeth VS, et al. Fetal phenotypes of Mendelian disorders: a descriptive study from India. Prenat Diagn. 2022;42(7):911-926. https://doi.org/10.1002/pd.6172
Shamseldin H, Kurdi W, Almusafri F, et al. Molecular autopsy in maternal-fetal medicine. Genet Med. 2018;20(4):420-427. https://doi.org/10.1038/gim.2017.111
Smogavec M, Bujalkova M, Lehney R, et al. Singleton exome sequencing of 90 fetuses with ultrasound anomalies revealing novel disease-causing variants and genotype-phenotype correlations. Eur J Hum Genet. 2022;30(4):428-438. https://doi.org/10.1038/s41431-021-01012-7
Sparks T, Adami L, Holliman P, et al. Exome sequencing for prenatal diagnosis in nonimmune hydrops fetalis. N J Med. 2020;383(18):1746-1756. https://doi.org/10.1056/nejmoa2023643
Tan H, Xie Y, Chen F, et al. Novel and recurrent variants identified in fetuses with central nervous system abnormalities by trios-medical exome sequencing. Clin Chim Acta. 2020;510:599-604. https://doi.org/10.1016/j.cca.2020.08.018
Tolusso L, Hazelton P, Wong B, Swarr D. Beyond diagnostic yield: prenatal exome sequencing results in maternal, neonatal, and familial clinical management changes. Genet Med. 2021;23(5):909-917. https://doi.org/10.1038/s41436-020-01067-9
Vora N, Gilmore K, Brandy A, et al. An approach to integrating exome sequencing for fetal structural anomalies into clinical practice. Genet Med. 2020;22(5):954-961. https://doi.org/10.1038/s41436-020-0750-4
Wang Y, Greenfeld E, Watkins N, et al. Diagnostic yield of genome sequencing for prenatal diagnosis of fetal structural anomalies. Prenat Diagn. 2022;42(7):1-9. https://doi.org/10.1002/pd.6108
Reches A, Hiersch L, Simchoni S, et al. Wole-exome sequencing in fetuses with central nervous system abnormalities. J Perinatol. 2018;38(10):1301-1308. https://doi.org/10.1038/s41372-018-0199-3
Weitensteiner V, Zhang R, Bungenberg J, et al. Exome sequencing in syndromic brain malformations identifies novel mutations in ACTB, and SLC(A6, and suggests BAZ1A as a new candidate gene. Birth Defects Res. 2018;110(7):587-597. https://doi.org/10.1002/bdr2.1200
Mustafa H, Sambatur E, Barbera J, et al. Diagnostic yield with exome sequencing in pre-natal severe bilateral ventriculomegaly: a systematic review and meta-analysis. Am J Obstet Gynaecol MFM. 2023;5(9):101048. https://doi.org/10.1016/j.ajogmf.2023.101048
Mustafa H, Sambatar E, Mohammad-Hossein H, et al. Prenatal agenesis of corpus callosum and diagnostic yield with exome sequencing, systematic review and meta-analysis. AJOG. 2023;S320:483. [conference abstract].
Paladini D, Malinger G, Birnbaum R, et al. ISUOG Practice Guidelines (updated): sonographic examination of the fetal central nervous system. Part 2: performance of targeted neurosonography. Ultrasound Obstet Gynecol. 2021;57(4):661-671. https://doi.org/10.1002/uog.23616
Mone F, Homfray T, Kagan KO, Kilby MD. Enhancement of fetal phenotyping in investigation of fetus using next-generation sequencing. Ultrasound Obstet Gynecol. 2023;62:459-461. Epub ahead of print. PMID: 37401773. https://doi.org/10.1002/uog.26301
Leibovitz Z, Lerman-Sagie T, Haddad L. Fetal brain development: regulating processes and related malformations. Life (Basel). 2022;12(6):809. https://doi.org/10.3390/life12060809
Hanzlik E, Gigante J. Microcephaly. Child (Basel). 2017;4(6):47. PMCID: PMC5483622. https://doi.org/10.3390/children4060047

Auteurs

Gillian V Blayney (GV)

Fetal Medicine Department, Royal Jubilee Maternity Service, Belfast Health and Social Care Trust, Belfast, UK.

Eoghan Laffan (E)

Department of Radiology, Children' Health Ireland at Crumlin, Dublin, Ireland.

Preethi A Jacob (PA)

Northampton General Hospital, Northampton, UK.

Caitlin D Baptiste (CD)

Columbia University, New York, New York, USA.

Heinz Gabriel (H)

Praxis für Humangenetik Tübingen, Tübingen, Germany.

Teresa N Sparks (TN)

Department of Obstetrics, Gynaecology & Reproductive Sciences, University of California San Francisco, San Francisco, California, USA.

Yuval Yaron (Y)

Prenatal Genetic Diagnosis Unit, Genetic Institute, Tel Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Mary E Norton (ME)

Department of Obstetrics, Gynaecology & Reproductive Sciences, University of California San Francisco, San Francisco, California, USA.

Karin Diderich (K)

Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, the Netherlands.

Yiming Wang (Y)

Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.

Karen Chong (K)

Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics & Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.

David Chitayat (D)

Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics & Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.

Neelam Saini (N)

Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India.

Shagun Aggarwal (S)

Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India.

Montse Pauta (M)

Insitut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), BCNatal, Barcelona, Spain.

Antoni Borrell (A)

Insitut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), BCNatal, Barcelona, Spain.

Kelly Gilmore (K)

Department of Obstetrics and Gynaecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Natalie J Chandler (NJ)

North Thames Genomic Laboratory Hub, NHS Foundation Trust, London, UK.

Stephanie Allen (S)

West Midlands Regional Genetics Laboratory, South and Central Genomic Laboratory Hub, Birmingham, UK.

Neeta Vora (N)

Department of Obstetrics and Gynaecology, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Abdul Noor (A)

Division of Diagnostic Medical Genetics, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.

Caitriona Monaghan (C)

Fetal Medicine Department, Royal Jubilee Maternity Service, Belfast Health and Social Care Trust, Belfast, UK.

Mark D Kilby (MD)

Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK.
Fetal Medicine Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK.

Ronald J Wapner (RJ)

Columbia University, New York, New York, USA.

Lyn S Chitty (LS)

North Thames Genomic Laboratory Hub, NHS Foundation Trust, London, UK.
Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK.

Fionnuala Mone (F)

Centre for Public Health, Queen's University Belfast, Belfast, UK.

Classifications MeSH