BCG Signal Quality Assessment Based on Time-Series Imaging Methods.
ballistocardiogram
classification
convolutional neural network
signal quality assessment
time-series imaging
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
24 Nov 2023
24 Nov 2023
Historique:
received:
26
09
2023
revised:
01
11
2023
accepted:
15
11
2023
medline:
9
12
2023
pubmed:
9
12
2023
entrez:
9
12
2023
Statut:
epublish
Résumé
This paper describes a signal quality classification method for arm ballistocardiogram (BCG), which has the potential for non-invasive and continuous blood pressure measurement. An advantage of the BCG signal for wearable devices is that it can easily be measured using accelerometers. However, the BCG signal is also susceptible to noise caused by motion artifacts. This distortion leads to errors in blood pressure estimation, thereby lowering the performance of blood pressure measurement based on BCG. In this study, to prevent such performance degradation, a binary classification model was created to distinguish between high-quality versus low-quality BCG signals. To estimate the most accurate model, four time-series imaging methods (recurrence plot, the Gramain angular summation field, the Gramain angular difference field, and the Markov transition field) were studied to convert the temporal BCG signal associated with each heartbeat into a 448 × 448 pixel image, and the image was classified using CNN models such as ResNet, SqueezeNet, DenseNet, and LeNet. A total of 9626 BCG beats were used for training, validation, and testing. The experimental results showed that the ResNet and SqueezeNet models with the Gramain angular difference field method achieved a binary classification accuracy of up to 87.5%.
Identifiants
pubmed: 38067755
pii: s23239382
doi: 10.3390/s23239382
pmc: PMC10708708
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Research Foundation of Korea
ID : 2020R1G1A1100421
Organisme : National Research Foundation of Korea
ID : RS-2023-00222406
Organisme : U. S. Office of Naval Research
ID : N00014-21-1-2031
Organisme : U.S. Office of Naval Research
ID : N00014-23-1-2828
Références
J Am Soc Hypertens. 2014 Dec;8(12):930-8
pubmed: 25492837
Sensors (Basel). 2021 Nov 14;21(22):
pubmed: 34833639
Am J Kidney Dis. 2012 Sep;60(3):449-62
pubmed: 22521624
IEEE Access. 2021;9:29736-29745
pubmed: 33747683
BMJ. 2001 Apr 28;322(7293):1043-7
pubmed: 11325773
Eur Cardiol. 2015 Dec;10(2):95-101
pubmed: 30310433
Eur Heart J. 2018 Sep 1;39(33):3021-3104
pubmed: 30165516
Int J Biosens Bioelectron. 2018;4(4):195-202
pubmed: 30906922
J R Soc Interface. 2022 Apr;19(189):20220012
pubmed: 35414211
Sensors (Basel). 2022 Aug 04;22(15):
pubmed: 35957395
Physiol Meas. 2018 Oct 22;39(10):105008
pubmed: 30183673
Ultrasound Med Biol. 2007 May;33(5):774-81
pubmed: 17383803
Physiol Meas. 2019 Jul 01;40(6):065008
pubmed: 31100748
Front Physiol. 2019 Nov 21;10:1415
pubmed: 31824333
IEEE Trans Biomed Eng. 2020 Oct;67(10):2721-2734
pubmed: 31995473
Sensors (Basel). 2021 Mar 20;21(6):
pubmed: 33804794
IEEE Trans Biomed Eng. 2022 Sep;69(9):2982-2993
pubmed: 35275809
Behav Res Methods. 2021 Aug;53(4):1689-1696
pubmed: 33528817
IEEE Trans Biomed Eng. 2021 Apr;68(4):1115-1122
pubmed: 32746068
Cardiol Clin. 2010 Nov;28(4):571-86
pubmed: 20937442
IEEE J Biomed Health Inform. 2019 Jul;23(4):1516-1525
pubmed: 30235151
IEEE Rev Biomed Eng. 2018;11:36-52
pubmed: 29994590