Arabinogalactan-Proteins as Boron-Acting Enzymes, Cross-Linking the Rhamnogalacturonan-II Domains of Pectin.

Ca2+ Pb2+ acid-growth arabinogalactan-proteins borate diesterase boron chaperones pectin rhamnogalacturonan-II trimers of RG-II

Journal

Plants (Basel, Switzerland)
ISSN: 2223-7747
Titre abrégé: Plants (Basel)
Pays: Switzerland
ID NLM: 101596181

Informations de publication

Date de publication:
21 Nov 2023
Historique:
received: 23 10 2023
revised: 05 11 2023
accepted: 09 11 2023
medline: 9 12 2023
pubmed: 9 12 2023
entrez: 9 12 2023
Statut: epublish

Résumé

Most pectic rhamnogalacturonan-II (RG-II) domains in plant cell walls are borate-bridged dimers. However, the sub-cellular locations, pH dependence, reversibility and biocatalyst involvement in borate bridging remain uncertain. Experiments discussed here explored these questions, utilising suspension-cultured plant cells. In-vivo pulse radiolabelling showed that most RG-II domains dimerise extremely quickly (<4 min after biosynthesis, thus while still intraprotoplasmic). This tallies with the finding that boron withdrawal causes cell wall weakening within 10-20 min, and supports a previously proposed biological role for boron/RG-II complexes specifically at the wall/membrane interface. We also discuss RG-II monomer ↔ dimer interconversion as monitored in vitro using gel electrophoresis and a novel thin-layer chromatography method to resolve monomers and dimers. Physiologically relevant acidity did not monomerise dimers, thus boron bridge breaking cannot be a wall-loosening mechanism in 'acid growth'; nevertheless, recently discovered RG-II trimers and tetramers are unstable and may thus underpin reversible wall loosening. Dimerising monomers in vitro by B(OH)

Identifiants

pubmed: 38068557
pii: plants12233921
doi: 10.3390/plants12233921
pmc: PMC10707938
pii:
doi:

Types de publication

Journal Article Review

Langues

eng

Subventions

Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/H000690/1
Pays : United Kingdom

Références

Plant Physiol. 1992 Aug;99(4):1271-4
pubmed: 11537886
Plant Physiol. 2000 Nov;124(3):1349-62
pubmed: 11080310
Plant Physiol. 1990 Nov;94(3):980-7
pubmed: 16667879
J Biol Chem. 2006 May 12;281(19):13708-13716
pubmed: 16549428
J Mol Biol. 1982 Mar 15;155(4):517-31
pubmed: 7086902
J Integr Plant Biol. 2015 Apr;57(4):373-87
pubmed: 25611087
Ann Bot. 2014 Oct;114(6):1327-37
pubmed: 24908680
Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16319-24
pubmed: 12451175
J Mol Biol. 1981 Dec 25;153(4):1075-85
pubmed: 7343680
J Biol Chem. 1999 May 7;274(19):13098-104
pubmed: 10224062
Plant Physiol. 1973 Jan;51(1):188-97
pubmed: 16658282
J Exp Biol. 1999 Jun;202 (Pt 12):1649-54
pubmed: 10333510
Front Plant Sci. 2012 Jun 27;3:140
pubmed: 22754559
Carbohydr Res. 1996 Sep 2;290(2):183-97
pubmed: 8823907
Plant Physiol. 1997 Apr;113(4):1265-72
pubmed: 9112775
Plant J. 2020 Sep;104(1):252-267
pubmed: 32662159
J Biol Chem. 1996 Sep 13;271(37):22923-30
pubmed: 8798473
Plant Cell Environ. 2010 Dec;33(12):2112-20
pubmed: 20636489
Carbohydr Polym. 2023 Feb 1;301(Pt B):120340
pubmed: 36446508
Plant J. 2023 Mar;113(6):1310-1329
pubmed: 36658763
Planta. 2004 May;219(1):147-57
pubmed: 14991405
Biofactors. 1992 Apr;3(4):229-39
pubmed: 1605832
Nature. 2017 Apr 6;544(7648):65-70
pubmed: 28329766
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):E4052-60
pubmed: 27354520
Plant Physiol. 2001 Aug;126(4):1698-705
pubmed: 11500567
Plant Physiol. 2005 Jan;137(1):104-16
pubmed: 15618420
Phytochemistry. 1998 Dec;49(7):1879-90
pubmed: 9883588
Plant Mol Biol. 2001 Mar;45(4):421-35
pubmed: 11352461
Plant J. 2014 Jul;79(1):139-49
pubmed: 24804932
Plant J. 2014 Feb;77(4):534-46
pubmed: 24320597
Biochem J. 2022 Sep 30;479(18):1967-1984
pubmed: 36062804
New Phytol. 2018 Feb;217(3):1128-1136
pubmed: 29139121
Glycobiology. 2008 Jun;18(6):473-82
pubmed: 18381977
J Exp Bot. 2008;59(10):2639-47
pubmed: 18503041
Planta. 2018 Apr;247(4):953-971
pubmed: 29288327
Plant Signal Behav. 2014;9(3):e28169
pubmed: 24603547
Ann Bot. 2014 Oct;114(6):1087-97
pubmed: 24685714
Plant Physiol. 2004 Oct;136(2):3383-95
pubmed: 15466241
Plant Cell. 2011 Jun;23(6):2362-78
pubmed: 21666002
J Biol Chem. 2006 Aug 11;281(32):22684-94
pubmed: 16772288
J Biol Chem. 2012 Mar 16;287(12):9623-32
pubmed: 22270363
New Phytol. 2019 Dec;224(4):1518-1531
pubmed: 31549420
New Phytol. 2016 Jan;209(1):241-51
pubmed: 26301520
Plant Physiol. 1998 Aug;117(4):1401-10
pubmed: 9701596
SLAS Technol. 2020 Aug;25(4):329-344
pubmed: 32468908
Ann Bot. 2022 Nov 17;130(5):703-715
pubmed: 36112021
Planta. 2000 Jul;211(2):275-86
pubmed: 10945222
Plant J. 2013 Oct;76(1):61-72
pubmed: 23802881
Plant Physiol. 1999 Jan;119(1):199-204
pubmed: 9880361
Plant Biol (Stuttg). 2012 May;14(3):447-57
pubmed: 22222112
Curr Opin Plant Biol. 2013 Jun;16(3):350-7
pubmed: 23499054
Plant Physiol. 2004 Jan;134(1):339-51
pubmed: 14671014
Science. 2001 Oct 26;294(5543):846-9
pubmed: 11679668
J Membr Biol. 2000 May 15;175(2):95-105
pubmed: 10811971
Plant Physiol. 1992 Sep;100(1):120-30
pubmed: 16652933

Auteurs

Rifat Ara Begum (RA)

Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh.

Stephen C Fry (SC)

The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK.

Classifications MeSH