A Drosophila heart optical coherence microscopy dataset for automatic video segmentation.


Journal

Scientific data
ISSN: 2052-4463
Titre abrégé: Sci Data
Pays: England
ID NLM: 101640192

Informations de publication

Date de publication:
09 Dec 2023
Historique:
received: 20 03 2023
accepted: 30 11 2023
medline: 10 12 2023
pubmed: 10 12 2023
entrez: 9 12 2023
Statut: epublish

Résumé

The heart of the fruit fly, Drosophila melanogaster, is a particularly suitable model for cardiac studies. Optical coherence microscopy (OCM) captures in vivo cross-sectional videos of the beating Drosophila heart for cardiac function quantification. To analyze those large-size multi-frame OCM recordings, human labelling has been employed, leading to low efficiency and poor reproducibility. Here, we introduce a robust and accurate automated Drosophila heart segmentation algorithm, called FlyNet 2.0+, which utilizes a long short-term memory (LSTM) convolutional neural network to leverage time series information in the videos, ensuring consistent, high-quality segmentation. We present a dataset of 213 Drosophila heart videos, equivalent to 604,000 cross-sectional images, containing all developmental stages and a wide range of beating patterns, including faster and slower than normal beating, arrhythmic beating, and periods of heart stop to capture these heart dynamics. Each video contains a corresponding ground truth mask. We expect this unique large dataset of the beating Drosophila heart in vivo will enable new deep learning approaches to efficiently characterize heart function to advance cardiac research.

Identifiants

pubmed: 38071220
doi: 10.1038/s41597-023-02802-y
pii: 10.1038/s41597-023-02802-y
pmc: PMC10710430
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

886

Subventions

Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01-EB025209
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01-HL156265
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : 1R21EB03268401

Informations de copyright

© 2023. The Author(s).

Références

Sci Adv. 2015 Oct 09;1(9):e1500639
pubmed: 26601299
Nat Neurosci. 2013 Oct;16(10):1499-508
pubmed: 23995068
J Exp Biol. 2017 Dec 15;220(Pt 24):4644-4653
pubmed: 29237767
Sci Rep. 2020 Jun 8;10(1):9248
pubmed: 32514084
Nat Rev Cardiol. 2022 Oct;19(10):684-703
pubmed: 35449407
Brain Cell Biol. 2008 Aug;36(1-4):129-39
pubmed: 18677566
J Biophotonics. 2013 Sep;6(9):708-17
pubmed: 23192969
Biotechniques. 2009 Feb;46(2):101-13
pubmed: 19317655
Sensors (Basel). 2013 Jul 12;13(7):8928-49
pubmed: 23857261
J Vis Exp. 2016 Dec 12;(118):
pubmed: 28060288
Jpn Dent Sci Rev. 2020 Nov;56(1):109-118
pubmed: 33033549
Dermatology. 2016;232(3):298-311
pubmed: 27104356
Skin Res Technol. 2001 Feb;7(1):1-9
pubmed: 11301634
J Healthc Eng. 2017;2017:7560645
pubmed: 29065642
Cardiol Ther. 2020 Dec;9(2):307-321
pubmed: 32564339
Biomed Opt Express. 2020 Feb 21;11(3):1568-1579
pubmed: 32206429
Biomed Opt Express. 2017 Apr 07;8(5):2405-2444
pubmed: 28663882
J Vis Exp. 2022 Aug 25;(186):
pubmed: 36094265
Gene. 2004 Nov 10;342(1):1-11
pubmed: 15527959
Sci Rep. 2019 Apr 3;9(1):5557
pubmed: 30944361
Mol Oncol. 2021 Oct;15(10):2580-2599
pubmed: 32915503
Methods. 2014 Jun 15;68(1):265-72
pubmed: 24727147
Sci Data. 2023 Dec 9;10(1):886
pubmed: 38071220
Circ Res. 2001 May 25;88(10):1053-8
pubmed: 11375275
Quant Imaging Med Surg. 2019 May;9(5):882-904
pubmed: 31281782
Genetics. 2018 Jun;209(2):367-380
pubmed: 29844090
Genome Res. 2001 Jun;11(6):1114-25
pubmed: 11381037
Commun Biol. 2020 Jun 29;3(1):336
pubmed: 32601302
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1394-9
pubmed: 16432241
Eye (Lond). 2004 Jun;18(6):561-70
pubmed: 14765099
J Biomed Opt. 2018 Apr;23(4):1-10
pubmed: 29701018
J Biophotonics. 2018 Dec;11(12):e201800146
pubmed: 29992766
Biotechniques. 2004 Jul;37(1):58-60, 62, 64 passim
pubmed: 15283201
Circulation. 2006 Jul 11;114(2):e35-6
pubmed: 16831991

Auteurs

Matthew Fishman (M)

Washington University in St. Louis, Department of Computer Science and Engineering, St. Louis, MO, 63130, USA.

Abigail Matt (A)

Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, MO, 63130, USA.

Fei Wang (F)

Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, MO, 63130, USA.

Elena Gracheva (E)

Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, MO, 63130, USA.

Jiantao Zhu (J)

Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, MO, 63130, USA.

Xiangping Ouyang (X)

Washington University in St. Louis, Department of Computer Science and Engineering, St. Louis, MO, 63130, USA.

Andrey Komarov (A)

Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, MO, 63130, USA.

Yuxuan Wang (Y)

Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, MO, 63130, USA.

Hongwu Liang (H)

Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, MO, 63130, USA.

Chao Zhou (C)

Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, MO, 63130, USA. chaozhou@wustl.edu.

Classifications MeSH