Evaluating CH

adsorption gas separation machine learning metal−organic framework molecular simulation

Journal

ACS applied materials & interfaces
ISSN: 1944-8252
Titre abrégé: ACS Appl Mater Interfaces
Pays: United States
ID NLM: 101504991

Informations de publication

Date de publication:
11 Dec 2023
Historique:
medline: 12 12 2023
pubmed: 12 12 2023
entrez: 12 12 2023
Statut: aheadofprint

Résumé

Considering the large abundance and diversity of metal-organic frameworks (MOFs), evaluating the gas adsorption and separation performance of the entire MOF material space using solely experimental techniques or brute-force computer simulations is impractical. In this study, we integrated high-throughput molecular simulations with machine learning (ML) to explore the potential of both synthesized, the real MOFs, and computer-generated, the hypothetical MOFs (hypoMOFs), for adsorption-based CH

Identifiants

pubmed: 38082488
doi: 10.1021/acsami.3c13533
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Auteurs

Hasan Can Gulbalkan (HC)

Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey.

Alper Uzun (A)

Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey.
Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey.
Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey.

Seda Keskin (S)

Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey.

Classifications MeSH