ERK2-topoisomerase II regulatory axis is important for gene activation in immediate early genes.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
14 Dec 2023
14 Dec 2023
Historique:
received:
14
09
2022
accepted:
29
11
2023
medline:
15
12
2023
pubmed:
15
12
2023
entrez:
14
12
2023
Statut:
epublish
Résumé
The function of the mitogen-activated protein kinase signaling pathway is required for the activation of immediate early genes (IEGs), including EGR1 and FOS, for cell growth and proliferation. Recent studies have identified topoisomerase II (TOP2) as one of the important regulators of the transcriptional activation of IEGs. However, the mechanism underlying transcriptional regulation involving TOP2 in IEG activation has remained unknown. Here, we demonstrate that ERK2, but not ERK1, is important for IEG transcriptional activation and report a critical ELK1 binding sequence for ERK2 function at the EGR1 gene. Our data indicate that both ERK1 and ERK2 extensively phosphorylate the C-terminal domain of TOP2B at mutual and distinctive residues. Although both ERK1 and ERK2 enhance the catalytic rate of TOP2B required to relax positive DNA supercoiling, ERK2 delays TOP2B catalysis of negative DNA supercoiling. In addition, ERK1 may relax DNA supercoiling by itself. ERK2 catalytic inhibition or knock-down interferes with transcription and deregulates TOP2B in IEGs. Furthermore, we present the first cryo-EM structure of the human cell-purified TOP2B and etoposide together with the EGR1 transcriptional start site (-30 to +20) that has the strongest affinity to TOP2B within -423 to +332. The structure shows TOP2B-mediated breakage and dramatic bending of the DNA. Transcription is activated by etoposide, while it is inhibited by ICRF193 at EGR1 and FOS, suggesting that TOP2B-mediated DNA break to favor transcriptional activation. Taken together, this study suggests that activated ERK2 phosphorylates TOP2B to regulate TOP2-DNA interactions and favor transcriptional activation in IEGs. We propose that TOP2B association, catalysis, and dissociation on its substrate DNA are important processes for regulating transcription and that ERK2-mediated TOP2B phosphorylation may be key for the catalysis and dissociation steps.
Identifiants
pubmed: 38097570
doi: 10.1038/s41467-023-44089-y
pii: 10.1038/s41467-023-44089-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8341Subventions
Organisme : National Research Foundation of Korea (NRF)
ID : 2022R1A21003569
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : KAKENHI
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP20H05690
Informations de copyright
© 2023. The Author(s).
Références
Eidem, T. M., Kugel, J. F. & Goodrich, J. A. Noncoding RNAs: Regulators of the Mammalian transcription machinery. J. Mol. Biol. 428, 2652–2659 (2016).
pubmed: 26920110
pmcid: 4894004
doi: 10.1016/j.jmb.2016.02.019
Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17, 1374–1395 (2016).
pubmed: 27629041
pmcid: 5048378
doi: 10.15252/embr.201642195
Whitmarsh, A. J., Shore, P., Sharrocks, A. D. & Davis, R. J. Integration of MAP kinase signal transduction pathways at the serum response element. Science 269, 403–407 (1995).
pubmed: 7618106
doi: 10.1126/science.7618106
Bunch, H. et al. Transcriptional elongation requires DNA break-induced signalling. Nat. Commun. 6, 10191 (2015).
pubmed: 26671524
doi: 10.1038/ncomms10191
Bunch, H. Role of genome guardian proteins in transcriptional elongation. FEBS Lett. 590, 1064–1075 (2016).
pubmed: 27010360
doi: 10.1002/1873-3468.12152
Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167–177 (2015).
pubmed: 25693130
pmcid: 4782187
doi: 10.1038/nrm3953
Brown, S. A., Imbalzano, A. N. & Kingston, R. E. Activator-dependent regulation of transcriptional pausing on nucleosomal templates. Genes Dev. 10, 1479–1490 (1996).
pubmed: 8666232
doi: 10.1101/gad.10.12.1479
Zobeck, K. L., Buckley, M. S., Zipfel, W. R. & Lis, J. T. Recruitment timing and dynamics of transcription factors at the Hsp70 loci in living cells. Mol. Cell 40, 965–975 (2010).
pubmed: 21172661
pmcid: 3021954
doi: 10.1016/j.molcel.2010.11.022
Bunch, H. HSF1 in RNA Polymerase II Promoter-Proximal Pausing and HSP70 Transcription. in Heat Shock Proteins in Inflammatory Diseases (eds. Asea, A. A. A. & Kaur, P.) 489-508 (Springer International Publishing, Cham, 2021).
Madabhushi, R. et al. Activity-Induced DNA Breaks Govern the Expression of Neuronal Early-Response Genes. Cell 161, 1592–1605 (2015).
pubmed: 26052046
pmcid: 4886855
doi: 10.1016/j.cell.2015.05.032
Scheidegger, A. et al. Genome-wide RNA pol II initiation and pausing in neural progenitors of the rat. BMC Genomics 20, 477 (2019).
pubmed: 31185909
pmcid: 6558777
doi: 10.1186/s12864-019-5829-4
Gorbovytska, V. et al. Enhancer RNAs stimulate Pol II pause release by harnessing multivalent interactions to NELF. Nat. Commun. 13, 2429 (2022).
pubmed: 35508485
pmcid: 9068813
doi: 10.1038/s41467-022-29934-w
Petrenko, N. & Struhl, K. Comparison of transcriptional initiation by RNA polymerase II across eukaryotic species. Elife 10, e67964 (2021).
Yang, Y. et al. HIF-1 Interacts with TRIM28 and DNA-PK to release paused RNA polymerase II and activate target gene transcription in response to hypoxia. Nat. Commun. 13, 316 (2022).
pubmed: 35031618
pmcid: 8760265
doi: 10.1038/s41467-021-27944-8
Galbraith, M. D. et al. HIF1A employs CDK8-mediator to stimulate RNAPII elongation in response to hypoxia. Cell 153, 1327–1339 (2013).
pubmed: 23746844
pmcid: 3681429
doi: 10.1016/j.cell.2013.04.048
Core, L. & Adelman, K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev. 33, 960–982 (2019).
pubmed: 31123063
pmcid: 6672056
doi: 10.1101/gad.325142.119
Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet 13, 720–731 (2012).
pubmed: 22986266
pmcid: 3552498
doi: 10.1038/nrg3293
Vos, S. M., Farnung, L., Urlaub, H. & Cramer, P. Structure of paused transcription complex Pol II-DSIF-NELF. Nature 560, 601–606 (2018).
pubmed: 30135580
pmcid: 6245578
doi: 10.1038/s41586-018-0442-2
Szlachta, K. et al. Alternative DNA secondary structure formation affects RNA polymerase II promoter-proximal pausing in human. Genome Biol. 19, 89 (2018).
pubmed: 30001206
pmcid: 6042338
doi: 10.1186/s13059-018-1463-8
Mines, R. C., Lipniacki, T. & Shen, X. Slow nucleosome dynamics set the transcriptional speed limit and induce RNA polymerase II traffic jams and bursts. PLoS Comput Biol. 18, e1009811 (2022).
pubmed: 35143483
pmcid: 8865691
doi: 10.1371/journal.pcbi.1009811
Bunch, H. et al. TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release. Nat. Struct. Mol. Biol. 21, 876–883 (2014).
pubmed: 25173174
pmcid: 4189995
doi: 10.1038/nsmb.2878
Chen, F. X. et al. PAF1, a molecular regulator of promoter-proximal pausing by RNA polymerase II. Cell 162, 1003–1015 (2015).
pubmed: 26279188
pmcid: 4679144
doi: 10.1016/j.cell.2015.07.042
Tettey, T. T. et al. A role for FACT in RNA Polymerase II promoter-proximal pausing. Cell Rep. 27, 3770–3779.e7 (2019).
pubmed: 31242411
doi: 10.1016/j.celrep.2019.05.099
Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).
pubmed: 20434984
pmcid: 2864022
doi: 10.1016/j.cell.2010.03.030
Pommier, Y., Sun, Y., Huang, S. N. & Nitiss, J. L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 17, 703–721 (2016).
pubmed: 27649880
pmcid: 9248348
doi: 10.1038/nrm.2016.111
Puc, J. et al. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell 160, 367–380 (2015).
pubmed: 25619691
pmcid: 4422651
doi: 10.1016/j.cell.2014.12.023
Bunch, H. RNA polymerase II pausing and transcriptional regulation of the HSP70 expression. Eur. J. Cell Biol. 96, 739–745 (2017).
pubmed: 29017815
doi: 10.1016/j.ejcb.2017.09.003
Yamamoto, T. et al. Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression. Curr. Biol. 16, 1171–1182 (2006).
pubmed: 16782007
doi: 10.1016/j.cub.2006.04.044
Hentze, N., Le Breton, L., Wiesner, J., Kempf, G. & Mayer, M. P. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1. Elife 5, e11576 (2016).
Vihervaara, A. & Sistonen, L. HSF1 at a glance. J. Cell Sci. 127, 261–266 (2014).
pubmed: 24421309
doi: 10.1242/jcs.132605
Gille, H. et al. ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 14, 951–962 (1995).
pubmed: 7889942
pmcid: 398167
doi: 10.1002/j.1460-2075.1995.tb07076.x
Monje, P., Hernandez-Losa, J., Lyons, R. J., Castellone, M. D. & Gutkind, J. S. Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J. Biol. Chem. 280, 35081–35084 (2005).
pubmed: 16123044
doi: 10.1074/jbc.C500353200
Lis, J. T., Mason, P., Peng, J., Price, D. H. & Werner, J. P-TEFb kinase recruitment and function at heat shock loci. Genes Dev. 14, 792–803 (2000).
pubmed: 10766736
pmcid: 316500
doi: 10.1101/gad.14.7.792
Ju, B. G. et al. A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 312, 1798–1802 (2006).
pubmed: 16794079
doi: 10.1126/science.1127196
McKinnon, P. J. Topoisomerases and the regulation of neural function. Nat. Rev. Neurosci. 17, 673–679 (2016).
pubmed: 27630045
pmcid: 5209242
doi: 10.1038/nrn.2016.101
Herrero-Ruiz, A. et al. Topoisomerase IIalpha represses transcription by enforcing promoter-proximal pausing. Cell Rep. 35, 108977 (2021).
pubmed: 33852840
pmcid: 8052185
doi: 10.1016/j.celrep.2021.108977
Singh, S. et al. Pausing sites of RNA polymerase II on actively transcribed genes are enriched in DNA double-stranded breaks. J. Biol. Chem. 295, 3990–4000 (2020).
pubmed: 32029477
pmcid: 7086017
doi: 10.1074/jbc.RA119.011665
Sasanuma, H. et al. BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II-DNA complexes. Proc. Natl. Acad. Sci. USA 115, E10642–E10651 (2018).
pubmed: 30352856
pmcid: 6233096
doi: 10.1073/pnas.1803177115
Shi, Q. et al. Estradiol increases risk of topoisomerase IIbeta-mediated DNA strand breaks to initiate Xp11.2 translocation renal cell carcinoma. Cell Commun. Signal 19, 114 (2021).
pubmed: 34784933
pmcid: 8594210
doi: 10.1186/s12964-021-00790-3
Wu, H. Y., Shyy, S. H., Wang, J. C. & Liu, L. F. Transcription generates positively and negatively supercoiled domains in the template. Cell 53, 433–440 (1988).
pubmed: 2835168
doi: 10.1016/0092-8674(88)90163-8
Ma, J., Bai, L. & Wang, M. D. Transcription under torsion. Science 340, 1580–1583 (2013).
pubmed: 23812716
pmcid: 5657242
doi: 10.1126/science.1235441
Wang, J. C. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 3, 430–440 (2002).
pubmed: 12042765
doi: 10.1038/nrm831
Nitiss, J. L. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer 9, 327–337 (2009).
pubmed: 19377505
pmcid: 2730144
doi: 10.1038/nrc2608
McKie, S. J., Neuman, K. C. & Maxwell, A. DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. Bioessays 43, e2000286 (2021).
pubmed: 33480441
pmcid: 7614492
doi: 10.1002/bies.202000286
Austin, C. A., Cowell, I. G., Khazeem, M. M., Lok, D. & Ng, H. T. TOP2B’s contributions to transcription. Biochem Soc. Trans. 49, 2483–2493 (2021).
pubmed: 34747992
doi: 10.1042/BST20200454
Carpenter, A. J. & Porter, A. C. Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase IIalpha mutant human cell line. Mol. Biol. Cell 15, 5700–5711 (2004).
pubmed: 15456904
pmcid: 532048
doi: 10.1091/mbc.e04-08-0732
Bunch, H. et al. BRCA1-BARD1 regulates transcription through modulating topoisomerase IIbeta. Open Biol. 11, 210221 (2021).
pubmed: 34610268
pmcid: 8492178
doi: 10.1098/rsob.210221
Austin, C. A. et al. TOP2B: The First Thirty Years. Int. J. Mol. Sci. 19, 2765 (2018).
Nitiss, J. L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 9, 338–350 (2009).
pubmed: 19377506
pmcid: 2748742
doi: 10.1038/nrc2607
Dickey, J. S. & Osheroff, N. Impact of the C-terminal domain of topoisomerase IIalpha on the DNA cleavage activity of the human enzyme. Biochemistry 44, 11546–11554 (2005).
pubmed: 16114891
doi: 10.1021/bi050811l
Vanden Broeck, A. et al. Structural basis for allosteric regulation of Human Topoisomerase IIalpha. Nat. Commun. 12, 2962 (2021).
pubmed: 34016969
pmcid: 8137924
doi: 10.1038/s41467-021-23136-6
Chen, S. F. et al. Structural insights into the gating of DNA passage by the topoisomerase II DNA-gate. Nat. Commun. 9, 3085 (2018).
pubmed: 30082834
pmcid: 6078968
doi: 10.1038/s41467-018-05406-y
Wu, C. C. et al. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science 333, 459–462 (2011).
pubmed: 21778401
doi: 10.1126/science.1204117
Selvaraj, A. & Prywes, R. Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Mol. Biol. 5, 13 (2004).
pubmed: 15329155
pmcid: 516031
doi: 10.1186/1471-2199-5-13
Iyer, V. R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999).
pubmed: 9872747
doi: 10.1126/science.283.5398.83
Zhang, W. & Liu, H. T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12, 9–18 (2002).
pubmed: 11942415
doi: 10.1038/sj.cr.7290105
Vantaggiato, C. et al. ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J. Biol. 5, 14 (2006).
pubmed: 16805921
pmcid: 1781522
doi: 10.1186/jbiol38
Busca, R., Pouyssegur, J. & Lenormand, P. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy? Front Cell Dev. Biol. 4, 53 (2016).
pubmed: 27376062
pmcid: 4897767
doi: 10.3389/fcell.2016.00053
Gagliardi, M. et al. Differential functions of ERK1 and ERK2 in lung metastasis processes in triple-negative breast cancer. Sci. Rep. 10, 8537 (2020).
pubmed: 32444778
pmcid: 7244517
doi: 10.1038/s41598-020-65250-3
Satoh, Y. et al. Extracellular signal-regulated kinase 2 (ERK2) knockdown mice show deficits in long-term memory; ERK2 has a specific function in learning and memory. J. Neurosci. 27, 10765–10776 (2007).
pubmed: 17913910
pmcid: 6672813
doi: 10.1523/JNEUROSCI.0117-07.2007
Fremin, C., Saba-El-Leil, M. K., Levesque, K., Ang, S. L. & Meloche, S. Functional redundancy of ERK1 and ERK2 MAP kinases during development. Cell Rep. 12, 913–921 (2015).
pubmed: 26235619
doi: 10.1016/j.celrep.2015.07.011
Shapiro, P. S. et al. Extracellular signal-regulated kinase activates topoisomerase IIalpha through a mechanism independent of phosphorylation. Mol. Cell Biol. 19, 3551–3560 (1999).
pubmed: 10207078
pmcid: 84147
doi: 10.1128/MCB.19.5.3551
Smorodinsky-Atias, K. et al. Intrinsically active variants of Erk oncogenically transform cells and disclose unexpected autophosphorylation capability that is independent of TEY phosphorylation. Mol. Biol. Cell 27, 1026–1039 (2016).
pubmed: 26658610
pmcid: 4791124
doi: 10.1091/mbc.E15-07-0521
Odrowaz, Z. & Sharrocks, A. D. ELK1 uses different DNA binding modes to regulate functionally distinct classes of target genes. PLoS Genet 8, e1002694 (2012).
pubmed: 22589737
pmcid: 3349735
doi: 10.1371/journal.pgen.1002694
Cardenas, M. E. & Gasser, S. M. Regulation of topoisomerase II by phosphorylation: A role for casein kinase II. J. Cell Sci. 104, 219–225 (1993).
pubmed: 8389373
doi: 10.1242/jcs.104.2.219
Nakazawa, N., Arakawa, O., Ebe, M. & Yanagida, M. Casein kinase II-dependent phosphorylation of DNA topoisomerase II suppresses the effect of a catalytic topo II inhibitor, ICRF-193, in fission yeast. J. Biol. Chem. 294, 3772–3782 (2019).
pubmed: 30635402
pmcid: 6416453
doi: 10.1074/jbc.RA118.004955
Brenan, L. et al. Phenotypic characterization of a comprehensive set of MAPK1/ERK2 missense mutants. Cell Rep. 17, 1171–1183 (2016).
pubmed: 27760319
pmcid: 5120861
doi: 10.1016/j.celrep.2016.09.061
Jasek-Gajda, E., Jurkowska, H., Jasinska, M., Litwin, J. A. & Lis, G. J. Combination of ERK2 inhibitor VX-11e and voreloxin synergistically enhances anti-proliferative and pro-apoptotic effects in leukemia cells. Apoptosis 24, 849–861 (2019).
pubmed: 31482470
pmcid: 6823322
doi: 10.1007/s10495-019-01564-6
Mandl, M., Slack, D. N. & Keyse, S. M. Specific inactivation and nuclear anchoring of extracellular signal-regulated kinase 2 by the inducible dual-specificity protein phosphatase DUSP5. Mol. Cell Biol. 25, 1830–1845 (2005).
pubmed: 15713638
pmcid: 549372
doi: 10.1128/MCB.25.5.1830-1845.2005
Caunt, C. J. & McArdle, C. A. ERK phosphorylation and nuclear accumulation: insights from single-cell imaging. Biochem Soc. Trans. 40, 224–229 (2012).
pubmed: 22260695
doi: 10.1042/BST20110662
Fremin, C. et al. ERK2 but not ERK1 plays a key role in hepatocyte replication: an RNAi-mediated ERK2 knockdown approach in wild-type and ERK1 null hepatocytes. Hepatology 45, 1035–1045 (2007).
pubmed: 17393467
doi: 10.1002/hep.21551
Alter, B. J., Zhao, C., Karim, F., Landreth, G. E. & Gereau, R. W. T. Genetic targeting of ERK1 suggests a predominant role for ERK2 in murine pain models. J. Neurosci. 30, 11537–11547 (2010).
pubmed: 20739576
pmcid: 2932641
doi: 10.1523/JNEUROSCI.6103-09.2010
Marchi, M. et al. The N-terminal domain of ERK1 accounts for the functional differences with ERK2. PLoS One 3, e3873 (2008).
pubmed: 19052640
pmcid: 2585810
doi: 10.1371/journal.pone.0003873
Eblen, S. T., Catling, A. D., Assanah, M. C. & Weber, M. J. Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2. Mol. Cell Biol. 21, 249–259 (2001).
pubmed: 11113199
pmcid: 88798
doi: 10.1128/MCB.21.1.249-259.2001
Mizutani, M., Ohta, T., Watanabe, H., Handa, H. & Hirose, S. Negative supercoiling of DNA facilitates an interaction between transcription factor IID and the fibroin gene promoter. Proc. Natl Acad. Sci. USA 88, 718–722 (1991).
pubmed: 1992462
pmcid: 50884
doi: 10.1073/pnas.88.3.718
Ma, J. & Wang, M. D. DNA supercoiling during transcription. Biophys. Rev. 8, 75–87 (2016).
pubmed: 28275417
pmcid: 5338639
doi: 10.1007/s12551-016-0215-9
Guo, M. S., Kawamura, R., Littlehale, M. L., Marko, J. F. & Laub, M. T. High-resolution, genome-wide mapping of positive supercoiling in chromosomes. Elife 10, e67236 (2021).
Kolb, R. H., Greer, P. M., Cao, P. T., Cowan, K. H. & Yan, Y. ERK1/2 signaling plays an important role in topoisomerase II poison-induced G2/M checkpoint activation. PLoS One 7, e50281 (2012).
pubmed: 23166842
pmcid: 3500378
doi: 10.1371/journal.pone.0050281
Huang, K. C. et al. Topoisomerase II poisoning by ICRF-193. J. Biol. Chem. 276, 44488–44494 (2001).
pubmed: 11577077
doi: 10.1074/jbc.M104383200
Xiao, H. et al. The topoisomerase IIbeta circular clamp arrests transcription and signals a 26S proteasome pathway. Proc. Natl. Acad. Sci. USA 100, 3239–3244 (2003).
pubmed: 12629207
pmcid: 152276
doi: 10.1073/pnas.0736401100
Kim, Y., Geiger, J. H., Hahn, S. & Sigler, P. B. Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520 (1993).
pubmed: 8413604
doi: 10.1038/365512a0
Parekh, B. S. & Hatfield, G. W. Transcriptional activation by protein-induced DNA bending: evidence for a DNA structural transmission model. Proc. Natl. Acad. Sci. USA 93, 1173–1177 (1996).
pubmed: 8577735
pmcid: 40051
doi: 10.1073/pnas.93.3.1173
Kerppola, T. K. & Curran, T. The transcription activation domains of Fos and Jun induce DNA bending through electrostatic interactions. EMBO J. 16, 2907–2916 (1997).
pubmed: 9184234
pmcid: 1169898
doi: 10.1093/emboj/16.10.2907
Acton, T. B., Mead, J., Steiner, A. M. & Vershon, A. K. Scanning mutagenesis of Mcm1: residues required for DNA binding, DNA bending, and transcriptional activation by a MADS-box protein. Mol. Cell Biol. 20, 1–11 (2000).
pubmed: 10594003
pmcid: 85026
doi: 10.1128/MCB.20.1.1-11.2000
McNamara, R. P. et al. KAP1 recruitment of the 7SK snRNP complex to promoters enables transcription elongation by RNA polymerase II. Mol. Cell 61, 39–53 (2016).
pubmed: 26725010
doi: 10.1016/j.molcel.2015.11.004
Kahli, M., Osmundson, J. S., Yeung, R. & Smith, D. J. Processing of eukaryotic Okazaki fragments by redundant nucleases can be uncoupled from ongoing DNA replication in vivo. Nucleic Acids Res 47, 1814–1822 (2019).
pubmed: 30541106
doi: 10.1093/nar/gky1242
Cromie, G. A., Connelly, J. C. & Leach, D. R. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol. Cell 8, 1163–1174 (2001).
pubmed: 11779493
doi: 10.1016/S1097-2765(01)00419-1
Michelini, F. et al. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat. Cell Biol. 19, 1400–1411 (2017).
pubmed: 29180822
pmcid: 5714282
doi: 10.1038/ncb3643
Bunch, H. et al. RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes. Genomics 108, 64–77 (2016).
pubmed: 27432546
doi: 10.1016/j.ygeno.2016.07.003
Cong, A. T. Q., Witter, T. L. & Schellenberg, M. J. High-efficiency recombinant protein purification using mCherry and YFP nanobody affinity matrices. Protein Sci. 31, e4383 (2022).
pubmed: 36040252
pmcid: 9413470
doi: 10.1002/pro.4383
Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
pubmed: 26592709
pmcid: 4711343
doi: 10.1016/j.jsb.2015.11.003
Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. Elife 5, e18722 (2016).
Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).
pubmed: 31591575
pmcid: 6858868
doi: 10.1038/s41592-019-0580-y
Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).
pubmed: 31591578
pmcid: 6858545
doi: 10.1038/s41592-019-0575-8
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D. Biol. Crystallogr 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D. Biol. Crystallogr 66, 213–221 (2010).
pubmed: 20124702
pmcid: 2815670
doi: 10.1107/S0907444909052925
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D. Biol. Crystallogr 66, 12–21 (2010).
pubmed: 20057044
doi: 10.1107/S0907444909042073