ERK2-topoisomerase II regulatory axis is important for gene activation in immediate early genes.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
14 Dec 2023
Historique:
received: 14 09 2022
accepted: 29 11 2023
medline: 15 12 2023
pubmed: 15 12 2023
entrez: 14 12 2023
Statut: epublish

Résumé

The function of the mitogen-activated protein kinase signaling pathway is required for the activation of immediate early genes (IEGs), including EGR1 and FOS, for cell growth and proliferation. Recent studies have identified topoisomerase II (TOP2) as one of the important regulators of the transcriptional activation of IEGs. However, the mechanism underlying transcriptional regulation involving TOP2 in IEG activation has remained unknown. Here, we demonstrate that ERK2, but not ERK1, is important for IEG transcriptional activation and report a critical ELK1 binding sequence for ERK2 function at the EGR1 gene. Our data indicate that both ERK1 and ERK2 extensively phosphorylate the C-terminal domain of TOP2B at mutual and distinctive residues. Although both ERK1 and ERK2 enhance the catalytic rate of TOP2B required to relax positive DNA supercoiling, ERK2 delays TOP2B catalysis of negative DNA supercoiling. In addition, ERK1 may relax DNA supercoiling by itself. ERK2 catalytic inhibition or knock-down interferes with transcription and deregulates TOP2B in IEGs. Furthermore, we present the first cryo-EM structure of the human cell-purified TOP2B and etoposide together with the EGR1 transcriptional start site (-30 to +20) that has the strongest affinity to TOP2B within -423 to +332. The structure shows TOP2B-mediated breakage and dramatic bending of the DNA. Transcription is activated by etoposide, while it is inhibited by ICRF193 at EGR1 and FOS, suggesting that TOP2B-mediated DNA break to favor transcriptional activation. Taken together, this study suggests that activated ERK2 phosphorylates TOP2B to regulate TOP2-DNA interactions and favor transcriptional activation in IEGs. We propose that TOP2B association, catalysis, and dissociation on its substrate DNA are important processes for regulating transcription and that ERK2-mediated TOP2B phosphorylation may be key for the catalysis and dissociation steps.

Identifiants

pubmed: 38097570
doi: 10.1038/s41467-023-44089-y
pii: 10.1038/s41467-023-44089-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8341

Subventions

Organisme : National Research Foundation of Korea (NRF)
ID : 2022R1A21003569
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : KAKENHI
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP20H05690

Informations de copyright

© 2023. The Author(s).

Références

Eidem, T. M., Kugel, J. F. & Goodrich, J. A. Noncoding RNAs: Regulators of the Mammalian transcription machinery. J. Mol. Biol. 428, 2652–2659 (2016).
pubmed: 26920110 pmcid: 4894004 doi: 10.1016/j.jmb.2016.02.019
Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17, 1374–1395 (2016).
pubmed: 27629041 pmcid: 5048378 doi: 10.15252/embr.201642195
Whitmarsh, A. J., Shore, P., Sharrocks, A. D. & Davis, R. J. Integration of MAP kinase signal transduction pathways at the serum response element. Science 269, 403–407 (1995).
pubmed: 7618106 doi: 10.1126/science.7618106
Bunch, H. et al. Transcriptional elongation requires DNA break-induced signalling. Nat. Commun. 6, 10191 (2015).
pubmed: 26671524 doi: 10.1038/ncomms10191
Bunch, H. Role of genome guardian proteins in transcriptional elongation. FEBS Lett. 590, 1064–1075 (2016).
pubmed: 27010360 doi: 10.1002/1873-3468.12152
Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167–177 (2015).
pubmed: 25693130 pmcid: 4782187 doi: 10.1038/nrm3953
Brown, S. A., Imbalzano, A. N. & Kingston, R. E. Activator-dependent regulation of transcriptional pausing on nucleosomal templates. Genes Dev. 10, 1479–1490 (1996).
pubmed: 8666232 doi: 10.1101/gad.10.12.1479
Zobeck, K. L., Buckley, M. S., Zipfel, W. R. & Lis, J. T. Recruitment timing and dynamics of transcription factors at the Hsp70 loci in living cells. Mol. Cell 40, 965–975 (2010).
pubmed: 21172661 pmcid: 3021954 doi: 10.1016/j.molcel.2010.11.022
Bunch, H. HSF1 in RNA Polymerase II Promoter-Proximal Pausing and HSP70 Transcription. in Heat Shock Proteins in Inflammatory Diseases (eds. Asea, A. A. A. & Kaur, P.) 489-508 (Springer International Publishing, Cham, 2021).
Madabhushi, R. et al. Activity-Induced DNA Breaks Govern the Expression of Neuronal Early-Response Genes. Cell 161, 1592–1605 (2015).
pubmed: 26052046 pmcid: 4886855 doi: 10.1016/j.cell.2015.05.032
Scheidegger, A. et al. Genome-wide RNA pol II initiation and pausing in neural progenitors of the rat. BMC Genomics 20, 477 (2019).
pubmed: 31185909 pmcid: 6558777 doi: 10.1186/s12864-019-5829-4
Gorbovytska, V. et al. Enhancer RNAs stimulate Pol II pause release by harnessing multivalent interactions to NELF. Nat. Commun. 13, 2429 (2022).
pubmed: 35508485 pmcid: 9068813 doi: 10.1038/s41467-022-29934-w
Petrenko, N. & Struhl, K. Comparison of transcriptional initiation by RNA polymerase II across eukaryotic species. Elife 10, e67964 (2021).
Yang, Y. et al. HIF-1 Interacts with TRIM28 and DNA-PK to release paused RNA polymerase II and activate target gene transcription in response to hypoxia. Nat. Commun. 13, 316 (2022).
pubmed: 35031618 pmcid: 8760265 doi: 10.1038/s41467-021-27944-8
Galbraith, M. D. et al. HIF1A employs CDK8-mediator to stimulate RNAPII elongation in response to hypoxia. Cell 153, 1327–1339 (2013).
pubmed: 23746844 pmcid: 3681429 doi: 10.1016/j.cell.2013.04.048
Core, L. & Adelman, K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev. 33, 960–982 (2019).
pubmed: 31123063 pmcid: 6672056 doi: 10.1101/gad.325142.119
Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet 13, 720–731 (2012).
pubmed: 22986266 pmcid: 3552498 doi: 10.1038/nrg3293
Vos, S. M., Farnung, L., Urlaub, H. & Cramer, P. Structure of paused transcription complex Pol II-DSIF-NELF. Nature 560, 601–606 (2018).
pubmed: 30135580 pmcid: 6245578 doi: 10.1038/s41586-018-0442-2
Szlachta, K. et al. Alternative DNA secondary structure formation affects RNA polymerase II promoter-proximal pausing in human. Genome Biol. 19, 89 (2018).
pubmed: 30001206 pmcid: 6042338 doi: 10.1186/s13059-018-1463-8
Mines, R. C., Lipniacki, T. & Shen, X. Slow nucleosome dynamics set the transcriptional speed limit and induce RNA polymerase II traffic jams and bursts. PLoS Comput Biol. 18, e1009811 (2022).
pubmed: 35143483 pmcid: 8865691 doi: 10.1371/journal.pcbi.1009811
Bunch, H. et al. TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release. Nat. Struct. Mol. Biol. 21, 876–883 (2014).
pubmed: 25173174 pmcid: 4189995 doi: 10.1038/nsmb.2878
Chen, F. X. et al. PAF1, a molecular regulator of promoter-proximal pausing by RNA polymerase II. Cell 162, 1003–1015 (2015).
pubmed: 26279188 pmcid: 4679144 doi: 10.1016/j.cell.2015.07.042
Tettey, T. T. et al. A role for FACT in RNA Polymerase II promoter-proximal pausing. Cell Rep. 27, 3770–3779.e7 (2019).
pubmed: 31242411 doi: 10.1016/j.celrep.2019.05.099
Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).
pubmed: 20434984 pmcid: 2864022 doi: 10.1016/j.cell.2010.03.030
Pommier, Y., Sun, Y., Huang, S. N. & Nitiss, J. L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 17, 703–721 (2016).
pubmed: 27649880 pmcid: 9248348 doi: 10.1038/nrm.2016.111
Puc, J. et al. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell 160, 367–380 (2015).
pubmed: 25619691 pmcid: 4422651 doi: 10.1016/j.cell.2014.12.023
Bunch, H. RNA polymerase II pausing and transcriptional regulation of the HSP70 expression. Eur. J. Cell Biol. 96, 739–745 (2017).
pubmed: 29017815 doi: 10.1016/j.ejcb.2017.09.003
Yamamoto, T. et al. Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression. Curr. Biol. 16, 1171–1182 (2006).
pubmed: 16782007 doi: 10.1016/j.cub.2006.04.044
Hentze, N., Le Breton, L., Wiesner, J., Kempf, G. & Mayer, M. P. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1. Elife 5, e11576 (2016).
Vihervaara, A. & Sistonen, L. HSF1 at a glance. J. Cell Sci. 127, 261–266 (2014).
pubmed: 24421309 doi: 10.1242/jcs.132605
Gille, H. et al. ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 14, 951–962 (1995).
pubmed: 7889942 pmcid: 398167 doi: 10.1002/j.1460-2075.1995.tb07076.x
Monje, P., Hernandez-Losa, J., Lyons, R. J., Castellone, M. D. & Gutkind, J. S. Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J. Biol. Chem. 280, 35081–35084 (2005).
pubmed: 16123044 doi: 10.1074/jbc.C500353200
Lis, J. T., Mason, P., Peng, J., Price, D. H. & Werner, J. P-TEFb kinase recruitment and function at heat shock loci. Genes Dev. 14, 792–803 (2000).
pubmed: 10766736 pmcid: 316500 doi: 10.1101/gad.14.7.792
Ju, B. G. et al. A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 312, 1798–1802 (2006).
pubmed: 16794079 doi: 10.1126/science.1127196
McKinnon, P. J. Topoisomerases and the regulation of neural function. Nat. Rev. Neurosci. 17, 673–679 (2016).
pubmed: 27630045 pmcid: 5209242 doi: 10.1038/nrn.2016.101
Herrero-Ruiz, A. et al. Topoisomerase IIalpha represses transcription by enforcing promoter-proximal pausing. Cell Rep. 35, 108977 (2021).
pubmed: 33852840 pmcid: 8052185 doi: 10.1016/j.celrep.2021.108977
Singh, S. et al. Pausing sites of RNA polymerase II on actively transcribed genes are enriched in DNA double-stranded breaks. J. Biol. Chem. 295, 3990–4000 (2020).
pubmed: 32029477 pmcid: 7086017 doi: 10.1074/jbc.RA119.011665
Sasanuma, H. et al. BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II-DNA complexes. Proc. Natl. Acad. Sci. USA 115, E10642–E10651 (2018).
pubmed: 30352856 pmcid: 6233096 doi: 10.1073/pnas.1803177115
Shi, Q. et al. Estradiol increases risk of topoisomerase IIbeta-mediated DNA strand breaks to initiate Xp11.2 translocation renal cell carcinoma. Cell Commun. Signal 19, 114 (2021).
pubmed: 34784933 pmcid: 8594210 doi: 10.1186/s12964-021-00790-3
Wu, H. Y., Shyy, S. H., Wang, J. C. & Liu, L. F. Transcription generates positively and negatively supercoiled domains in the template. Cell 53, 433–440 (1988).
pubmed: 2835168 doi: 10.1016/0092-8674(88)90163-8
Ma, J., Bai, L. & Wang, M. D. Transcription under torsion. Science 340, 1580–1583 (2013).
pubmed: 23812716 pmcid: 5657242 doi: 10.1126/science.1235441
Wang, J. C. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 3, 430–440 (2002).
pubmed: 12042765 doi: 10.1038/nrm831
Nitiss, J. L. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer 9, 327–337 (2009).
pubmed: 19377505 pmcid: 2730144 doi: 10.1038/nrc2608
McKie, S. J., Neuman, K. C. & Maxwell, A. DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. Bioessays 43, e2000286 (2021).
pubmed: 33480441 pmcid: 7614492 doi: 10.1002/bies.202000286
Austin, C. A., Cowell, I. G., Khazeem, M. M., Lok, D. & Ng, H. T. TOP2B’s contributions to transcription. Biochem Soc. Trans. 49, 2483–2493 (2021).
pubmed: 34747992 doi: 10.1042/BST20200454
Carpenter, A. J. & Porter, A. C. Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase IIalpha mutant human cell line. Mol. Biol. Cell 15, 5700–5711 (2004).
pubmed: 15456904 pmcid: 532048 doi: 10.1091/mbc.e04-08-0732
Bunch, H. et al. BRCA1-BARD1 regulates transcription through modulating topoisomerase IIbeta. Open Biol. 11, 210221 (2021).
pubmed: 34610268 pmcid: 8492178 doi: 10.1098/rsob.210221
Austin, C. A. et al. TOP2B: The First Thirty Years. Int. J. Mol. Sci. 19, 2765 (2018).
Nitiss, J. L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 9, 338–350 (2009).
pubmed: 19377506 pmcid: 2748742 doi: 10.1038/nrc2607
Dickey, J. S. & Osheroff, N. Impact of the C-terminal domain of topoisomerase IIalpha on the DNA cleavage activity of the human enzyme. Biochemistry 44, 11546–11554 (2005).
pubmed: 16114891 doi: 10.1021/bi050811l
Vanden Broeck, A. et al. Structural basis for allosteric regulation of Human Topoisomerase IIalpha. Nat. Commun. 12, 2962 (2021).
pubmed: 34016969 pmcid: 8137924 doi: 10.1038/s41467-021-23136-6
Chen, S. F. et al. Structural insights into the gating of DNA passage by the topoisomerase II DNA-gate. Nat. Commun. 9, 3085 (2018).
pubmed: 30082834 pmcid: 6078968 doi: 10.1038/s41467-018-05406-y
Wu, C. C. et al. Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science 333, 459–462 (2011).
pubmed: 21778401 doi: 10.1126/science.1204117
Selvaraj, A. & Prywes, R. Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Mol. Biol. 5, 13 (2004).
pubmed: 15329155 pmcid: 516031 doi: 10.1186/1471-2199-5-13
Iyer, V. R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999).
pubmed: 9872747 doi: 10.1126/science.283.5398.83
Zhang, W. & Liu, H. T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12, 9–18 (2002).
pubmed: 11942415 doi: 10.1038/sj.cr.7290105
Vantaggiato, C. et al. ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J. Biol. 5, 14 (2006).
pubmed: 16805921 pmcid: 1781522 doi: 10.1186/jbiol38
Busca, R., Pouyssegur, J. & Lenormand, P. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy? Front Cell Dev. Biol. 4, 53 (2016).
pubmed: 27376062 pmcid: 4897767 doi: 10.3389/fcell.2016.00053
Gagliardi, M. et al. Differential functions of ERK1 and ERK2 in lung metastasis processes in triple-negative breast cancer. Sci. Rep. 10, 8537 (2020).
pubmed: 32444778 pmcid: 7244517 doi: 10.1038/s41598-020-65250-3
Satoh, Y. et al. Extracellular signal-regulated kinase 2 (ERK2) knockdown mice show deficits in long-term memory; ERK2 has a specific function in learning and memory. J. Neurosci. 27, 10765–10776 (2007).
pubmed: 17913910 pmcid: 6672813 doi: 10.1523/JNEUROSCI.0117-07.2007
Fremin, C., Saba-El-Leil, M. K., Levesque, K., Ang, S. L. & Meloche, S. Functional redundancy of ERK1 and ERK2 MAP kinases during development. Cell Rep. 12, 913–921 (2015).
pubmed: 26235619 doi: 10.1016/j.celrep.2015.07.011
Shapiro, P. S. et al. Extracellular signal-regulated kinase activates topoisomerase IIalpha through a mechanism independent of phosphorylation. Mol. Cell Biol. 19, 3551–3560 (1999).
pubmed: 10207078 pmcid: 84147 doi: 10.1128/MCB.19.5.3551
Smorodinsky-Atias, K. et al. Intrinsically active variants of Erk oncogenically transform cells and disclose unexpected autophosphorylation capability that is independent of TEY phosphorylation. Mol. Biol. Cell 27, 1026–1039 (2016).
pubmed: 26658610 pmcid: 4791124 doi: 10.1091/mbc.E15-07-0521
Odrowaz, Z. & Sharrocks, A. D. ELK1 uses different DNA binding modes to regulate functionally distinct classes of target genes. PLoS Genet 8, e1002694 (2012).
pubmed: 22589737 pmcid: 3349735 doi: 10.1371/journal.pgen.1002694
Cardenas, M. E. & Gasser, S. M. Regulation of topoisomerase II by phosphorylation: A role for casein kinase II. J. Cell Sci. 104, 219–225 (1993).
pubmed: 8389373 doi: 10.1242/jcs.104.2.219
Nakazawa, N., Arakawa, O., Ebe, M. & Yanagida, M. Casein kinase II-dependent phosphorylation of DNA topoisomerase II suppresses the effect of a catalytic topo II inhibitor, ICRF-193, in fission yeast. J. Biol. Chem. 294, 3772–3782 (2019).
pubmed: 30635402 pmcid: 6416453 doi: 10.1074/jbc.RA118.004955
Brenan, L. et al. Phenotypic characterization of a comprehensive set of MAPK1/ERK2 missense mutants. Cell Rep. 17, 1171–1183 (2016).
pubmed: 27760319 pmcid: 5120861 doi: 10.1016/j.celrep.2016.09.061
Jasek-Gajda, E., Jurkowska, H., Jasinska, M., Litwin, J. A. & Lis, G. J. Combination of ERK2 inhibitor VX-11e and voreloxin synergistically enhances anti-proliferative and pro-apoptotic effects in leukemia cells. Apoptosis 24, 849–861 (2019).
pubmed: 31482470 pmcid: 6823322 doi: 10.1007/s10495-019-01564-6
Mandl, M., Slack, D. N. & Keyse, S. M. Specific inactivation and nuclear anchoring of extracellular signal-regulated kinase 2 by the inducible dual-specificity protein phosphatase DUSP5. Mol. Cell Biol. 25, 1830–1845 (2005).
pubmed: 15713638 pmcid: 549372 doi: 10.1128/MCB.25.5.1830-1845.2005
Caunt, C. J. & McArdle, C. A. ERK phosphorylation and nuclear accumulation: insights from single-cell imaging. Biochem Soc. Trans. 40, 224–229 (2012).
pubmed: 22260695 doi: 10.1042/BST20110662
Fremin, C. et al. ERK2 but not ERK1 plays a key role in hepatocyte replication: an RNAi-mediated ERK2 knockdown approach in wild-type and ERK1 null hepatocytes. Hepatology 45, 1035–1045 (2007).
pubmed: 17393467 doi: 10.1002/hep.21551
Alter, B. J., Zhao, C., Karim, F., Landreth, G. E. & Gereau, R. W. T. Genetic targeting of ERK1 suggests a predominant role for ERK2 in murine pain models. J. Neurosci. 30, 11537–11547 (2010).
pubmed: 20739576 pmcid: 2932641 doi: 10.1523/JNEUROSCI.6103-09.2010
Marchi, M. et al. The N-terminal domain of ERK1 accounts for the functional differences with ERK2. PLoS One 3, e3873 (2008).
pubmed: 19052640 pmcid: 2585810 doi: 10.1371/journal.pone.0003873
Eblen, S. T., Catling, A. D., Assanah, M. C. & Weber, M. J. Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2. Mol. Cell Biol. 21, 249–259 (2001).
pubmed: 11113199 pmcid: 88798 doi: 10.1128/MCB.21.1.249-259.2001
Mizutani, M., Ohta, T., Watanabe, H., Handa, H. & Hirose, S. Negative supercoiling of DNA facilitates an interaction between transcription factor IID and the fibroin gene promoter. Proc. Natl Acad. Sci. USA 88, 718–722 (1991).
pubmed: 1992462 pmcid: 50884 doi: 10.1073/pnas.88.3.718
Ma, J. & Wang, M. D. DNA supercoiling during transcription. Biophys. Rev. 8, 75–87 (2016).
pubmed: 28275417 pmcid: 5338639 doi: 10.1007/s12551-016-0215-9
Guo, M. S., Kawamura, R., Littlehale, M. L., Marko, J. F. & Laub, M. T. High-resolution, genome-wide mapping of positive supercoiling in chromosomes. Elife 10, e67236 (2021).
Kolb, R. H., Greer, P. M., Cao, P. T., Cowan, K. H. & Yan, Y. ERK1/2 signaling plays an important role in topoisomerase II poison-induced G2/M checkpoint activation. PLoS One 7, e50281 (2012).
pubmed: 23166842 pmcid: 3500378 doi: 10.1371/journal.pone.0050281
Huang, K. C. et al. Topoisomerase II poisoning by ICRF-193. J. Biol. Chem. 276, 44488–44494 (2001).
pubmed: 11577077 doi: 10.1074/jbc.M104383200
Xiao, H. et al. The topoisomerase IIbeta circular clamp arrests transcription and signals a 26S proteasome pathway. Proc. Natl. Acad. Sci. USA 100, 3239–3244 (2003).
pubmed: 12629207 pmcid: 152276 doi: 10.1073/pnas.0736401100
Kim, Y., Geiger, J. H., Hahn, S. & Sigler, P. B. Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520 (1993).
pubmed: 8413604 doi: 10.1038/365512a0
Parekh, B. S. & Hatfield, G. W. Transcriptional activation by protein-induced DNA bending: evidence for a DNA structural transmission model. Proc. Natl. Acad. Sci. USA 93, 1173–1177 (1996).
pubmed: 8577735 pmcid: 40051 doi: 10.1073/pnas.93.3.1173
Kerppola, T. K. & Curran, T. The transcription activation domains of Fos and Jun induce DNA bending through electrostatic interactions. EMBO J. 16, 2907–2916 (1997).
pubmed: 9184234 pmcid: 1169898 doi: 10.1093/emboj/16.10.2907
Acton, T. B., Mead, J., Steiner, A. M. & Vershon, A. K. Scanning mutagenesis of Mcm1: residues required for DNA binding, DNA bending, and transcriptional activation by a MADS-box protein. Mol. Cell Biol. 20, 1–11 (2000).
pubmed: 10594003 pmcid: 85026 doi: 10.1128/MCB.20.1.1-11.2000
McNamara, R. P. et al. KAP1 recruitment of the 7SK snRNP complex to promoters enables transcription elongation by RNA polymerase II. Mol. Cell 61, 39–53 (2016).
pubmed: 26725010 doi: 10.1016/j.molcel.2015.11.004
Kahli, M., Osmundson, J. S., Yeung, R. & Smith, D. J. Processing of eukaryotic Okazaki fragments by redundant nucleases can be uncoupled from ongoing DNA replication in vivo. Nucleic Acids Res 47, 1814–1822 (2019).
pubmed: 30541106 doi: 10.1093/nar/gky1242
Cromie, G. A., Connelly, J. C. & Leach, D. R. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol. Cell 8, 1163–1174 (2001).
pubmed: 11779493 doi: 10.1016/S1097-2765(01)00419-1
Michelini, F. et al. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat. Cell Biol. 19, 1400–1411 (2017).
pubmed: 29180822 pmcid: 5714282 doi: 10.1038/ncb3643
Bunch, H. et al. RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes. Genomics 108, 64–77 (2016).
pubmed: 27432546 doi: 10.1016/j.ygeno.2016.07.003
Cong, A. T. Q., Witter, T. L. & Schellenberg, M. J. High-efficiency recombinant protein purification using mCherry and YFP nanobody affinity matrices. Protein Sci. 31, e4383 (2022).
pubmed: 36040252 pmcid: 9413470 doi: 10.1002/pro.4383
Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
pubmed: 26592709 pmcid: 4711343 doi: 10.1016/j.jsb.2015.11.003
Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. Elife 5, e18722 (2016).
Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).
pubmed: 31591575 pmcid: 6858868 doi: 10.1038/s41592-019-0580-y
Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).
pubmed: 31591578 pmcid: 6858545 doi: 10.1038/s41592-019-0575-8
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D. Biol. Crystallogr 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D. Biol. Crystallogr 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D. Biol. Crystallogr 66, 12–21 (2010).
pubmed: 20057044 doi: 10.1107/S0907444909042073

Auteurs

Heeyoun Bunch (H)

Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea. heeyounbunch@gmail.com.
School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea. heeyounbunch@gmail.com.

Deukyeong Kim (D)

School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.

Masahiro Naganuma (M)

Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.

Reiko Nakagawa (R)

RIKEN BDR Laboratory for Phyloinformatics, Hyogo, 650-0047, Japan.

Anh Cong (A)

Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.

Jaehyeon Jeong (J)

Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.

Haruhiko Ehara (H)

Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.

Hongha Vu (H)

Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea.

Jeong Ho Chang (JH)

Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea.

Matthew J Schellenberg (MJ)

Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.

Shun-Ichi Sekine (SI)

Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.

Classifications MeSH