On-chip phonon-magnon reservoir for neuromorphic computing.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
14 Dec 2023
14 Dec 2023
Historique:
received:
21
04
2023
accepted:
22
11
2023
medline:
15
12
2023
pubmed:
15
12
2023
entrez:
14
12
2023
Statut:
epublish
Résumé
Reservoir computing is a concept involving mapping signals onto a high-dimensional phase space of a dynamical system called "reservoir" for subsequent recognition by an artificial neural network. We implement this concept in a nanodevice consisting of a sandwich of a semiconductor phonon waveguide and a patterned ferromagnetic layer. A pulsed write-laser encodes input signals into propagating phonon wavepackets, interacting with ferromagnetic magnons. The second laser reads the output signal reflecting a phase-sensitive mix of phonon and magnon modes, whose content is highly sensitive to the write- and read-laser positions. The reservoir efficiently separates the visual shapes drawn by the write-laser beam on the nanodevice surface in an area with a size comparable to a single pixel of a modern digital camera. Our finding suggests the phonon-magnon interaction as a promising hardware basis for realizing on-chip reservoir computing in future neuromorphic architectures.
Identifiants
pubmed: 38097654
doi: 10.1038/s41467-023-43891-y
pii: 10.1038/s41467-023-43891-y
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8296Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB TRR 160 (project A1)
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB TRR160 (project A1)
Organisme : Volkswagen Foundation (VolkswagenStiftung)
ID : 97758
Organisme : Volkswagen Foundation (VolkswagenStiftung)
ID : 97758
Informations de copyright
© 2023. The Author(s).
Références
Le Cun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
doi: 10.1038/nature14539
Strubell, E., Ganesh, A. & McCallum, A. Energy and policy considerations for modern deep learning research. AAAI 34, 13693–13696 (2019).
doi: 10.1609/aaai.v34i09.7123
Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorph. Comput. Eng. 2, 022501 (2022).
doi: 10.1088/2634-4386/ac4a83
Edwards, C. Growing pains for deep learning. Commun. ACM 58, 14–16 (2015).
doi: 10.1145/2771283
Tanaka, G. et al. Recent advances in physical reservoir computing: A review. Neural Netw. 115, 100–123 (2019).
pubmed: 30981085
doi: 10.1016/j.neunet.2019.03.005
Zhang, Z. et al. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 13, 6590 (2022).
pubmed: 36329017
pmcid: 9633641
doi: 10.1038/s41467-022-34230-8
Lee, D. et al. In-sensor image memorization and encoding via optical neurons for bio-stimulus domain reduction toward visual cognitive processing. Nat. Commun. 13, 5223 (2022).
pubmed: 36064944
pmcid: 9445171
doi: 10.1038/s41467-022-32790-3
Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).
doi: 10.1038/s42254-020-0208-2
Nakajima, K. Physical reservoir computing–an introductory perspective. Jpn J. Appl. Phys. 59, 060501 (2020).
doi: 10.35848/1347-4065/ab8d4f
Cucchi, M., Abreu, S., Ciccone, G., Brunner, D. & Kleemann, H. Hands-on reservoir computing: a tutorial for practical implementation. Neuromorphic comput. eng. 2, 032002 (2022).
doi: 10.1088/2634-4386/ac7db7
Fernando, C., Sojakka, S. Pattern recognition in a bucket. In (eds Banzhaf, W. et al.) Advances in Artificial Life. ECAL 2003. Lecture Notes in Computer Science 2801 (Springer, Berlin, Heidelberg, 2003).
Duport, F., Schneider, B., Smerieri, A., Haelterman, M. & Massar, S. All-optical reservoir computing. Opt. Express 20, 22783–22795 (2012).
pubmed: 23037429
doi: 10.1364/OE.20.022783
Larger, L. et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt. Express 20, 3241–3249 (2012).
pubmed: 22330562
doi: 10.1364/OE.20.003241
Vandoorne, K. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014).
pubmed: 24662967
doi: 10.1038/ncomms4541
Larger, L. et al. High- speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X 7, 011015 (2017).
Antonik, P., Haelterman, M. & Massar, S. Brain-inspired photonic signal processor for generating periodic patterns and emulating chaotic systems. Phys. Rev. Appl. 7, 054014 (2017).
doi: 10.1103/PhysRevApplied.7.054014
Dong, J., Rafayelyan, M., Krzakala, F. & Gigan, S. Optical reservoir computing using multiple light scattering for chaotic systems prediction. IEEE J. Sel. Top. Quantum Electron 26, 1–12 (2020).
doi: 10.1109/JSTQE.2019.2936281
Sunada, S. & Uchida, A. Photonic neural field on a silicon chip: large-scale, high-speed neuro-inspired computing and sensing. Optica 8, 1388–1396 (2021).
doi: 10.1364/OPTICA.434918
Dion, J., Mejaouri, S. & Sylvestre, J. Reservoir computing with a single delay-coupled non-linear mechanical oscillator. J. Appl. Phys. 124, 152132 (2018).
doi: 10.1063/1.5038038
Meffan, R. C., Ijima, T., Banerjee, A., Hirotani, J. & Tsuchiya, T. Non-linear processing with a surface acoustic wave reservoir computer. Microsyst. Technol. 29, 1197–1206 (2023).
doi: 10.1007/s00542-023-05463-4
Nakane, R., Tanaka, G. & Hirose, A. Reservoir computing with spin waves excited in a garnet film. IEEE Access 6, 4462–4469 (2018).
doi: 10.1109/ACCESS.2018.2794584
Papp, Á., Porod, W. & Csaba, G. Nanoscale neural network using non-linear spin-wave interference. Nat. Commun. 12, 6422 (2021).
pubmed: 34741047
pmcid: 8571280
doi: 10.1038/s41467-021-26711-z
Gartside, J. C. et al. Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting. Nat. Nanotechnol. 17, 460–469 (2022).
pubmed: 35513584
doi: 10.1038/s41565-022-01091-7
Körber, L. et al. Pattern recognition in reciprocal space with a magnon-scattering reservoir. Nat. Commun. 14, 3954 (2023).
pubmed: 37402733
pmcid: 10319722
doi: 10.1038/s41467-023-39452-y
Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon 11, 441–446 (2017).
doi: 10.1038/nphoton.2017.93
Hughes, T. W., Williamson, I. A., Minkov, M. & Fan, S. Wave physics as an analog recurrent neural network. Sci. Adv. 5, eaay6946 (2019).
pubmed: 31903420
pmcid: 6924985
doi: 10.1126/sciadv.aay6946
Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).
pubmed: 35082422
pmcid: 8791835
doi: 10.1038/s41586-021-04223-6
Yaremkevich, D. D. et al. Protected long-distance guiding of hypersound underneath a nanocorrugated surface. ACS Nano 15, 4802–4810 (2021).
pubmed: 33593052
doi: 10.1021/acsnano.0c09475
Scherbakov, A. V. et al. Optical excitation of single- and multimode magnetization precession in Fe-Ga nanolayers. Phys. Rev. Appl. 11, 031003 (2019).
doi: 10.1103/PhysRevApplied.11.031003
Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).
doi: 10.1103/PhysRevB.34.4129
Matsuda, O., Larciprete, M. C., Li Voti, R. & Wright, O. B. Fundamentals of picosecond laser ultrasonics. Ultrasonics 56, 3–20 (2015).
pubmed: 24998119
doi: 10.1016/j.ultras.2014.06.005
Hurley, D. H. & Telschow, K. L. Picosecond surface acoustic waves using a suboptical wavelength absorption grating. Phys. Rev. B 66, 153301 (2002).
doi: 10.1103/PhysRevB.66.153301
Grossmann, M. et al. Time-resolved detection of propagating Lamb waves in thin silicon membranes with frequencies up to 197 GHz. Appl. Phys. Lett. 106, 171904 (2015).
doi: 10.1063/1.4919132
Weiler, M. et al. Elastically driven ferromagnetic resonance in Nickel thin films. Phys. Rev. Lett. 106, 117601 (2011).
pubmed: 21469894
doi: 10.1103/PhysRevLett.106.117601
Casals, B. et al. Generation and imaging of magnetoacoustic waves over millimeter distances. Phys. Rev. Lett. 124, 137202 (2020).
pubmed: 32302199
doi: 10.1103/PhysRevLett.124.137202
Kukhtaruk, S. M., Rushforth, A. W., Godejohann, F., Scherbakov, A. V. & Bayer, M. Transition magnon modes in thin ferromagnetic nanogratings. Phys. Rev. B 106, 064411 (2022).
doi: 10.1103/PhysRevB.106.064411
Godejohann, F. et al. Magnon polaron formed by selectively coupled coherent magnon and phonon modes of a surface patterned ferromagnet. Phys. Rev. B 102, 144438 (2020).
doi: 10.1103/PhysRevB.102.144438
Babu, N. K. P. et al. The interaction between surface acoustic waves and spin waves: the role of anisotropy and spatial profiles of the modes. Nano Lett. 21, 946–951 (2021).
pubmed: 33231459
doi: 10.1021/acs.nanolett.0c03692
Chang, C. L. et al. Parametric frequency mixing in a magnetoelastically driven linear ferromagnetic-resonance oscillator. Phys. Rev. B 95, 060409(R) (2017).
doi: 10.1103/PhysRevB.95.060409
Gepshtein, S., Pawa, A. S., Kwon, S., Savel’ev, S. & Albright, T. D. Spatially distributed computation in cortical circuits. Sci. Adv. 8, eabl5865 (2022).
pubmed: 35452288
pmcid: 9032974
doi: 10.1126/sciadv.abl5865
Shorten, C. & Khoshgoftaar, T. M. A survey on image data augmentation for deep learning. J. Big Data 6, 60 (2019).
doi: 10.1186/s40537-019-0197-0
Hagan, M. T., Demuth, H. B., Beale, M. H. & Jesús, O. D. Neural Network Design, 2nd edn, eBook, https://hagan.okstate.edu/nnd.html .
Estébanez, I., Fischer, I. & Soriano, M. C. Constructive role of noise for high-quality replication of chaotic attractor dynamics using a hardware-based reservoir computer. Phys. Rev. Appl. 12, 034058 (2019).
doi: 10.1103/PhysRevApplied.12.034058
Cottam, R. I. & Saunders, G. A. The elastic constants of GaAs from 2 K to 320 K. J. Phys. C. 6, 2105–2118 (1973).
doi: 10.1088/0022-3719/6/13/011
Clark, A. E. et al. Temperature dependence of the magnetic anisotropy and magnetostriction of Fe
doi: 10.1063/1.1856731
Jen, S. U., Lo, Y. Y. & Pai, L. W. Temperature dependence of mechanical properties of the Fe
doi: 10.1088/0022-3727/49/14/145004
Yang, K. et al. Advanced RF filters for wireless communications. Chip https://doi.org/10.1016/j.chip.2023.100058 (in press, 2023).
Kobecki, M. et al. Picosecond ultrasonics with miniaturized semiconductor lasers. Ultrasonics 106, 106150 (2020).
pubmed: 32325301
doi: 10.1016/j.ultras.2020.106150
Gauthier, D. J., Bollt, E. & Griffith, A. Next generation reservoir computing. Nat. Commun. 12, 5564 (2021).
pubmed: 34548491
pmcid: 8455577
doi: 10.1038/s41467-021-25801-2
Machado, D. H. O. et al. Generation and propagation of superhigh-frequency bulk acoustic waves in GaAs. Phys. Rev. Appl. 12, 044013 (2019).
doi: 10.1103/PhysRevApplied.12.044013
Lu,, R., Yang, Y., Link, S. & Gong, S. Enabling higher order Lamb wave acoustic devices with complementarily oriented piezoelectric thin films. J. Microelectromech. Syst. 29, 1332–1346 (2020).
doi: 10.1109/JMEMS.2020.3007590
Heitmann, S. & Ermentrout, G. B. Direction-selective motion discrimination by traveling waves in visual cortex. PLoS Comput. Biol. 16, e1008164 (2020).
pubmed: 32877405
pmcid: 7467221
doi: 10.1371/journal.pcbi.1008164
Janson, N. B. & Marsden, C. J. Dynamical system with plastic self-organized velocity field as an alternative conceptual model of a cognitive system. Sci. Rep. 7, 17007 (2017).
pubmed: 29208976
pmcid: 5717027
doi: 10.1038/s41598-017-16994-y
Gonzalez-Castillo, J. Traveling and standing waves in the brain. Nat. Neurosci. 25, 980–981 (2022).
pubmed: 35902650
pmcid: 10170397
doi: 10.1038/s41593-022-01119-0
Marković, D. & Grollier, J. Quantum neuromorphic computing. Appl. Phys. Lett. 117, 150501 (2020).
doi: 10.1063/5.0020014
Li, J. A. et al. Quantum reinforcement learning during human decision-making. Nat. Hum. Behav. 4, 294–307 (2020).
pubmed: 31959921
doi: 10.1038/s41562-019-0804-2
Bartkiewicz, K. et al. Experimental kernel-based quantum machine learning in finite feature space. Sci. Rep. 10, 12356 (2020).
pubmed: 32704032
pmcid: 7378258
doi: 10.1038/s41598-020-68911-5
Spagnolo, M. et al. Experimental photonic quantum memristor. Nat. Photon. 16, 318–323 (2022).
doi: 10.1038/s41566-022-00973-5
Hiebert, W. K., Stankiewicz, A. & Freeman, M. R. Direct observation of magnetic relaxation in a small permalloy disk by time-resolved scanning Kerr microscopy. Phys. Rev. Lett. 79, 1134 (1997).
doi: 10.1103/PhysRevLett.79.1134
Bombeck, M. et al. Excitation of spin waves in ferromagnetic (Ga,Mn)As layers by picosecond strain pulses. Phys. Rev. B 85, 195324 (2012).
doi: 10.1103/PhysRevB.85.195324
Bartels, A. et al. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling. Rev. Sci. Instrum. 78, 035107 (2007).
pubmed: 17411217
doi: 10.1063/1.2714048
Chollet, F. Deep Learning for Python (Manning, 2017).
Kingma, D. P., & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).
Ripley, B. D. Pattern Recognition and Neural Networks (Cambridge University Press, 2007).
Kobecki, M. et al. Resonant thermal energy transfer to magnons in a ferromagnetic nanolayer. Nat. Commun. 11, 4130 (2020).
pubmed: 32807771
pmcid: 7431562
doi: 10.1038/s41467-020-17635-1