On-chip phonon-magnon reservoir for neuromorphic computing.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
14 Dec 2023
Historique:
received: 21 04 2023
accepted: 22 11 2023
medline: 15 12 2023
pubmed: 15 12 2023
entrez: 14 12 2023
Statut: epublish

Résumé

Reservoir computing is a concept involving mapping signals onto a high-dimensional phase space of a dynamical system called "reservoir" for subsequent recognition by an artificial neural network. We implement this concept in a nanodevice consisting of a sandwich of a semiconductor phonon waveguide and a patterned ferromagnetic layer. A pulsed write-laser encodes input signals into propagating phonon wavepackets, interacting with ferromagnetic magnons. The second laser reads the output signal reflecting a phase-sensitive mix of phonon and magnon modes, whose content is highly sensitive to the write- and read-laser positions. The reservoir efficiently separates the visual shapes drawn by the write-laser beam on the nanodevice surface in an area with a size comparable to a single pixel of a modern digital camera. Our finding suggests the phonon-magnon interaction as a promising hardware basis for realizing on-chip reservoir computing in future neuromorphic architectures.

Identifiants

pubmed: 38097654
doi: 10.1038/s41467-023-43891-y
pii: 10.1038/s41467-023-43891-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8296

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB TRR 160 (project A1)
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB TRR160 (project A1)
Organisme : Volkswagen Foundation (VolkswagenStiftung)
ID : 97758
Organisme : Volkswagen Foundation (VolkswagenStiftung)
ID : 97758

Informations de copyright

© 2023. The Author(s).

Références

Le Cun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
doi: 10.1038/nature14539
Strubell, E., Ganesh, A. & McCallum, A. Energy and policy considerations for modern deep learning research. AAAI 34, 13693–13696 (2019).
doi: 10.1609/aaai.v34i09.7123
Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorph. Comput. Eng. 2, 022501 (2022).
doi: 10.1088/2634-4386/ac4a83
Edwards, C. Growing pains for deep learning. Commun. ACM 58, 14–16 (2015).
doi: 10.1145/2771283
Tanaka, G. et al. Recent advances in physical reservoir computing: A review. Neural Netw. 115, 100–123 (2019).
pubmed: 30981085 doi: 10.1016/j.neunet.2019.03.005
Zhang, Z. et al. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 13, 6590 (2022).
pubmed: 36329017 pmcid: 9633641 doi: 10.1038/s41467-022-34230-8
Lee, D. et al. In-sensor image memorization and encoding via optical neurons for bio-stimulus domain reduction toward visual cognitive processing. Nat. Commun. 13, 5223 (2022).
pubmed: 36064944 pmcid: 9445171 doi: 10.1038/s41467-022-32790-3
Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).
doi: 10.1038/s42254-020-0208-2
Nakajima, K. Physical reservoir computing–an introductory perspective. Jpn J. Appl. Phys. 59, 060501 (2020).
doi: 10.35848/1347-4065/ab8d4f
Cucchi, M., Abreu, S., Ciccone, G., Brunner, D. & Kleemann, H. Hands-on reservoir computing: a tutorial for practical implementation. Neuromorphic comput. eng. 2, 032002 (2022).
doi: 10.1088/2634-4386/ac7db7
Fernando, C., Sojakka, S. Pattern recognition in a bucket. In (eds Banzhaf, W. et al.) Advances in Artificial Life. ECAL 2003. Lecture Notes in Computer Science 2801 (Springer, Berlin, Heidelberg, 2003).
Duport, F., Schneider, B., Smerieri, A., Haelterman, M. & Massar, S. All-optical reservoir computing. Opt. Express 20, 22783–22795 (2012).
pubmed: 23037429 doi: 10.1364/OE.20.022783
Larger, L. et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt. Express 20, 3241–3249 (2012).
pubmed: 22330562 doi: 10.1364/OE.20.003241
Vandoorne, K. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014).
pubmed: 24662967 doi: 10.1038/ncomms4541
Larger, L. et al. High- speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X 7, 011015 (2017).
Antonik, P., Haelterman, M. & Massar, S. Brain-inspired photonic signal processor for generating periodic patterns and emulating chaotic systems. Phys. Rev. Appl. 7, 054014 (2017).
doi: 10.1103/PhysRevApplied.7.054014
Dong, J., Rafayelyan, M., Krzakala, F. & Gigan, S. Optical reservoir computing using multiple light scattering for chaotic systems prediction. IEEE J. Sel. Top. Quantum Electron 26, 1–12 (2020).
doi: 10.1109/JSTQE.2019.2936281
Sunada, S. & Uchida, A. Photonic neural field on a silicon chip: large-scale, high-speed neuro-inspired computing and sensing. Optica 8, 1388–1396 (2021).
doi: 10.1364/OPTICA.434918
Dion, J., Mejaouri, S. & Sylvestre, J. Reservoir computing with a single delay-coupled non-linear mechanical oscillator. J. Appl. Phys. 124, 152132 (2018).
doi: 10.1063/1.5038038
Meffan, R. C., Ijima, T., Banerjee, A., Hirotani, J. & Tsuchiya, T. Non-linear processing with a surface acoustic wave reservoir computer. Microsyst. Technol. 29, 1197–1206 (2023).
doi: 10.1007/s00542-023-05463-4
Nakane, R., Tanaka, G. & Hirose, A. Reservoir computing with spin waves excited in a garnet film. IEEE Access 6, 4462–4469 (2018).
doi: 10.1109/ACCESS.2018.2794584
Papp, Á., Porod, W. & Csaba, G. Nanoscale neural network using non-linear spin-wave interference. Nat. Commun. 12, 6422 (2021).
pubmed: 34741047 pmcid: 8571280 doi: 10.1038/s41467-021-26711-z
Gartside, J. C. et al. Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting. Nat. Nanotechnol. 17, 460–469 (2022).
pubmed: 35513584 doi: 10.1038/s41565-022-01091-7
Körber, L. et al. Pattern recognition in reciprocal space with a magnon-scattering reservoir. Nat. Commun. 14, 3954 (2023).
pubmed: 37402733 pmcid: 10319722 doi: 10.1038/s41467-023-39452-y
Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon 11, 441–446 (2017).
doi: 10.1038/nphoton.2017.93
Hughes, T. W., Williamson, I. A., Minkov, M. & Fan, S. Wave physics as an analog recurrent neural network. Sci. Adv. 5, eaay6946 (2019).
pubmed: 31903420 pmcid: 6924985 doi: 10.1126/sciadv.aay6946
Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).
pubmed: 35082422 pmcid: 8791835 doi: 10.1038/s41586-021-04223-6
Yaremkevich, D. D. et al. Protected long-distance guiding of hypersound underneath a nanocorrugated surface. ACS Nano 15, 4802–4810 (2021).
pubmed: 33593052 doi: 10.1021/acsnano.0c09475
Scherbakov, A. V. et al. Optical excitation of single- and multimode magnetization precession in Fe-Ga nanolayers. Phys. Rev. Appl. 11, 031003 (2019).
doi: 10.1103/PhysRevApplied.11.031003
Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).
doi: 10.1103/PhysRevB.34.4129
Matsuda, O., Larciprete, M. C., Li Voti, R. & Wright, O. B. Fundamentals of picosecond laser ultrasonics. Ultrasonics 56, 3–20 (2015).
pubmed: 24998119 doi: 10.1016/j.ultras.2014.06.005
Hurley, D. H. & Telschow, K. L. Picosecond surface acoustic waves using a suboptical wavelength absorption grating. Phys. Rev. B 66, 153301 (2002).
doi: 10.1103/PhysRevB.66.153301
Grossmann, M. et al. Time-resolved detection of propagating Lamb waves in thin silicon membranes with frequencies up to 197 GHz. Appl. Phys. Lett. 106, 171904 (2015).
doi: 10.1063/1.4919132
Weiler, M. et al. Elastically driven ferromagnetic resonance in Nickel thin films. Phys. Rev. Lett. 106, 117601 (2011).
pubmed: 21469894 doi: 10.1103/PhysRevLett.106.117601
Casals, B. et al. Generation and imaging of magnetoacoustic waves over millimeter distances. Phys. Rev. Lett. 124, 137202 (2020).
pubmed: 32302199 doi: 10.1103/PhysRevLett.124.137202
Kukhtaruk, S. M., Rushforth, A. W., Godejohann, F., Scherbakov, A. V. & Bayer, M. Transition magnon modes in thin ferromagnetic nanogratings. Phys. Rev. B 106, 064411 (2022).
doi: 10.1103/PhysRevB.106.064411
Godejohann, F. et al. Magnon polaron formed by selectively coupled coherent magnon and phonon modes of a surface patterned ferromagnet. Phys. Rev. B 102, 144438 (2020).
doi: 10.1103/PhysRevB.102.144438
Babu, N. K. P. et al. The interaction between surface acoustic waves and spin waves: the role of anisotropy and spatial profiles of the modes. Nano Lett. 21, 946–951 (2021).
pubmed: 33231459 doi: 10.1021/acs.nanolett.0c03692
Chang, C. L. et al. Parametric frequency mixing in a magnetoelastically driven linear ferromagnetic-resonance oscillator. Phys. Rev. B 95, 060409(R) (2017).
doi: 10.1103/PhysRevB.95.060409
Gepshtein, S., Pawa, A. S., Kwon, S., Savel’ev, S. & Albright, T. D. Spatially distributed computation in cortical circuits. Sci. Adv. 8, eabl5865 (2022).
pubmed: 35452288 pmcid: 9032974 doi: 10.1126/sciadv.abl5865
Shorten, C. & Khoshgoftaar, T. M. A survey on image data augmentation for deep learning. J. Big Data 6, 60 (2019).
doi: 10.1186/s40537-019-0197-0
Hagan, M. T., Demuth, H. B., Beale, M. H. & Jesús, O. D. Neural Network Design, 2nd edn, eBook, https://hagan.okstate.edu/nnd.html .
Estébanez, I., Fischer, I. & Soriano, M. C. Constructive role of noise for high-quality replication of chaotic attractor dynamics using a hardware-based reservoir computer. Phys. Rev. Appl. 12, 034058 (2019).
doi: 10.1103/PhysRevApplied.12.034058
Cottam, R. I. & Saunders, G. A. The elastic constants of GaAs from 2 K to 320 K. J. Phys. C. 6, 2105–2118 (1973).
doi: 10.1088/0022-3719/6/13/011
Clark, A. E. et al. Temperature dependence of the magnetic anisotropy and magnetostriction of Fe
doi: 10.1063/1.1856731
Jen, S. U., Lo, Y. Y. & Pai, L. W. Temperature dependence of mechanical properties of the Fe
doi: 10.1088/0022-3727/49/14/145004
Yang, K. et al. Advanced RF filters for wireless communications. Chip https://doi.org/10.1016/j.chip.2023.100058 (in press, 2023).
Kobecki, M. et al. Picosecond ultrasonics with miniaturized semiconductor lasers. Ultrasonics 106, 106150 (2020).
pubmed: 32325301 doi: 10.1016/j.ultras.2020.106150
Gauthier, D. J., Bollt, E. & Griffith, A. Next generation reservoir computing. Nat. Commun. 12, 5564 (2021).
pubmed: 34548491 pmcid: 8455577 doi: 10.1038/s41467-021-25801-2
Machado, D. H. O. et al. Generation and propagation of superhigh-frequency bulk acoustic waves in GaAs. Phys. Rev. Appl. 12, 044013 (2019).
doi: 10.1103/PhysRevApplied.12.044013
Lu,, R., Yang, Y., Link, S. & Gong, S. Enabling higher order Lamb wave acoustic devices with complementarily oriented piezoelectric thin films. J. Microelectromech. Syst. 29, 1332–1346 (2020).
doi: 10.1109/JMEMS.2020.3007590
Heitmann, S. & Ermentrout, G. B. Direction-selective motion discrimination by traveling waves in visual cortex. PLoS Comput. Biol. 16, e1008164 (2020).
pubmed: 32877405 pmcid: 7467221 doi: 10.1371/journal.pcbi.1008164
Janson, N. B. & Marsden, C. J. Dynamical system with plastic self-organized velocity field as an alternative conceptual model of a cognitive system. Sci. Rep. 7, 17007 (2017).
pubmed: 29208976 pmcid: 5717027 doi: 10.1038/s41598-017-16994-y
Gonzalez-Castillo, J. Traveling and standing waves in the brain. Nat. Neurosci. 25, 980–981 (2022).
pubmed: 35902650 pmcid: 10170397 doi: 10.1038/s41593-022-01119-0
Marković, D. & Grollier, J. Quantum neuromorphic computing. Appl. Phys. Lett. 117, 150501 (2020).
doi: 10.1063/5.0020014
Li, J. A. et al. Quantum reinforcement learning during human decision-making. Nat. Hum. Behav. 4, 294–307 (2020).
pubmed: 31959921 doi: 10.1038/s41562-019-0804-2
Bartkiewicz, K. et al. Experimental kernel-based quantum machine learning in finite feature space. Sci. Rep. 10, 12356 (2020).
pubmed: 32704032 pmcid: 7378258 doi: 10.1038/s41598-020-68911-5
Spagnolo, M. et al. Experimental photonic quantum memristor. Nat. Photon. 16, 318–323 (2022).
doi: 10.1038/s41566-022-00973-5
Hiebert, W. K., Stankiewicz, A. & Freeman, M. R. Direct observation of magnetic relaxation in a small permalloy disk by time-resolved scanning Kerr microscopy. Phys. Rev. Lett. 79, 1134 (1997).
doi: 10.1103/PhysRevLett.79.1134
Bombeck, M. et al. Excitation of spin waves in ferromagnetic (Ga,Mn)As layers by picosecond strain pulses. Phys. Rev. B 85, 195324 (2012).
doi: 10.1103/PhysRevB.85.195324
Bartels, A. et al. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling. Rev. Sci. Instrum. 78, 035107 (2007).
pubmed: 17411217 doi: 10.1063/1.2714048
Chollet, F. Deep Learning for Python (Manning, 2017).
Kingma, D. P., & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).
Ripley, B. D. Pattern Recognition and Neural Networks (Cambridge University Press, 2007).
Kobecki, M. et al. Resonant thermal energy transfer to magnons in a ferromagnetic nanolayer. Nat. Commun. 11, 4130 (2020).
pubmed: 32807771 pmcid: 7431562 doi: 10.1038/s41467-020-17635-1

Auteurs

Dmytro D Yaremkevich (DD)

Experimentelle Physik 2, Technische Universität Dortmund, D-44227, Dortmund, Germany.

Alexey V Scherbakov (AV)

Experimentelle Physik 2, Technische Universität Dortmund, D-44227, Dortmund, Germany. alexey.shcherbakov@tu-dortmund.de.

Luke De Clerk (L)

Department of Physics, Loughborough University, Loughborough, LE11 3TU, UK.
Machine Learning Development, SS&C Technologies, 128 Queen Victoria Street, London, EC4V 4BJ, UK.

Serhii M Kukhtaruk (SM)

Department of Theoretical Physics, V. E. Lashkaryov Institute of Semiconductor Physics, 03028, Kyiv, Ukraine.

Achim Nadzeyka (A)

Raith GmbH, 44263, Dortmund, Germany.

Richard Campion (R)

School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.

Andrew W Rushforth (AW)

School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.

Sergey Savel'ev (S)

Department of Physics, Loughborough University, Loughborough, LE11 3TU, UK.

Alexander G Balanov (AG)

Department of Physics, Loughborough University, Loughborough, LE11 3TU, UK.

Manfred Bayer (M)

Experimentelle Physik 2, Technische Universität Dortmund, D-44227, Dortmund, Germany.

Classifications MeSH