Building a vertebra: Development of the amniote sclerotome.
sclerotome
somite development
vertebral column
Journal
Journal of morphology
ISSN: 1097-4687
Titre abrégé: J Morphol
Pays: United States
ID NLM: 0406125
Informations de publication
Date de publication:
Jan 2024
Jan 2024
Historique:
revised:
13
10
2023
received:
20
07
2023
accepted:
04
12
2023
medline:
15
12
2023
pubmed:
15
12
2023
entrez:
15
12
2023
Statut:
ppublish
Résumé
In embryonic development, the vertebral column arises from the sclerotomal compartment of the somites. The sclerotome is a mesenchymal cell mass which can be subdivided into several subpopulations specified by different regulatory mechanisms and giving rise to different parts of the vertebrae like vertebral body, vertebral arch, ribs, and vertebral joints. This review gives a short overview on the molecular and cellular basis of the formation of sclerotomal subdomains and the morphogenesis of their vertebral derivatives.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
e21665Informations de copyright
© 2023 The Authors. Journal of Morphology published by Wiley Periodicals LLC.
Références
Alkhatib, B., Ban, G. I., Williams, S., & Serra, R. (2018). IVD development: Nucleus pulposus development and sclerotome specification. Current Molecular Biology Reports, 4(3), 132-141. https://doi.org/10.1007/s40610-018-0100-3
Alkhatib, B., Liu, C., & Serra, R. (2018). Tgfbr2 is required in Acan-expressing cells for maintenance of the intervertebral and sternocostal joints. JOR Spine, 1(2), e1025. https://doi.org/10.1002/jsp2.1025
Aoyama, H., & Asamoto, K. (1988). Determination of somite cells: independence of cell differentiation and morphogenesis. Development, 104(1), 15-28.
Aoyama, H., & Asamoto, K. (2000). The developmental fate of the rostral/caudal half of a somite for vertebra and rib formation: Experimental confirmation of the resegmentation theory using chick-quail chimeras. Mechanisms of Development, 99(1-2), 71-82.
Baffi, M. O., Moran, M. A., & Serra, R. (2006). Tgfbr2 regulates the maintenance of boundaries in the axial skeleton. Developmental Biology, 296(2), 363-374. https://doi.org/10.1016/j.ydbio.2006.06.002
Baffi, M. O., Slattery, E., Sohn, P., Moses, H. L., Chytil, A., & Serra, R. (2004). Conditional deletion of the TGF-β type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones. Developmental Biology, 276(1), 124-142. https://doi.org/10.1016/j.ydbio.2004.08.027
Bagnall, K. M., Higgins, S. J., & Sanders, E. J. (1988). The contribution made by a single somite to the vertebral column: Experimental evidence in support of resegmentation using the chick-quail chimaera model. Development, 103(1), 69-85.
Bagnall, K. M., Higgins, S. J., & Sanders, E. J. (1989). The contribution made by cells from a single somite to tissues within a body segment and assessment of their integration with similar cells from adjacent segments. Development, 107(4), 931-943. https://doi.org/10.1242/dev.107.4.931
Ban, G. I., Williams, S., & Serra, R. (2019). Antagonism of BMP signaling is insufficient to induce fibrous differentiation in primary sclerotome. Experimental Cell Research, 378(1), 11-20. https://doi.org/10.1016/j.yexcr.2019.01.026
Bannykh, S. I., Emery, S. C., Gerber, J. K., Jones, K. L., Benirschke, K., & Masliah, E. (2003). Aberrant Pax1 and Pax9 expression in Jarcho-Levin syndrome: Report of two Caucasian siblings and literature review. American Journal of Medical Genetics, Part A, 120A(2), 241-246. https://doi.org/10.1002/ajmg.a.20192
Beckett, M., Ralphs, J., Caterson, B., & Hayes, A. (2015). The transmembrane heparan sulphate proteoglycan syndecan-4 is involved in establishment of the lamellar structure of the annulus fibrosus of the intervertebral disc. European Cells and Materials, 30, 69-88. https://doi.org/10.22203/ecm.v030a06
Bell, D. M., Leung, K. K. H., Wheatley, S. C., Ng, L. J., Zhou, S., Wing Ling, K., Har Sham, M., Koopman, P., Tam, P. P. L., & Cheah, K. S. E. (1997). SOX9 directly regulates the type-ll collagen gene. Nature Genetics, 16(2), 174-178. https://doi.org/10.1038/ng0697-174
Bialek, P., Kern, B., Yang, X., Schrock, M., Sosic, D., Hong, N., Wu, H., Yu, K., Ornitz, D. M., Olson, E. N., Justice, M. J., & Karsenty, G. (2004). A twist code determines the onset of osteoblast differentiation. Developmental Cell, 6(3), 423-435. https://doi.org/10.1016/s1534-5807(04)00058-9
Brent, A. E., Schweitzer, R., & Tabin, C. J. (2003). A somitic compartment of tendon progenitors. Cell, 113(2), 235-248.
Brent, A. E., & Tabin, C. J. (2004). FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development, 131(16), 3885-3896. https://doi.org/10.1242/dev.01275
Buchberger, A., Schwarzer, M., Brand, T., Pabst, O., Seidl, K., & Arnold, H. H. (1998). Chicken winged-helix transcription factor cFKH-1 prefigures axial and appendicular skeletal structures during chicken embryogenesis. Developmental Dynamics, 212(1), 94-101.
Bussen, M., Petry, M., Schuster-Gossler, K., Leitges, M., Gossler, A., & Kispert, A. (2004). The t-box transcription factor Tbx18 maintains the separation of anterior and posterior somite compartments. Genes & Development, 18(10), 1209-1221. https://doi.org/10.1101/gad.300104
Buttitta, L., Mo, R., Hui, C. C., & Fan, C. M. (2003). Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotome induction. Development, 130(25), 6233-6243. https://doi.org/10.1242/dev.00851
Cairns, D. M., Sato, M. E., Lee, P. G., Lassar, A. B., & Zeng, L. (2008). A gradient of Shh establishes mutually repressing somitic cell fates induced by Nkx3.2 and Pax3. Developmental Biology, 323(2), 152-165. https://doi.org/10.1016/j.ydbio.2008.08.024
Cheng, L., Alvares, L. E., Ahmed, M. U., El-Hanfy, A. S., & Dietrich, S. (2004). The epaxial-hypaxial subdivision of the avian somite. Developmental Biology, 274(2), 348-369. https://doi.org/10.1016/j.ydbio.2004.07.020
Chiang, C., Litingtung, Y., Lee, E., Young, K. E., Corden, J. L., Westphal, H., & Beachy, P. A. (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 383(6599), 407-413.
Christ, B., Huang, R., & Scaal, M. (2004). Formation and differentiation of the avian sclerotome. Anatomy and Embryology, 208(5), 333-350.
Christ, B., & Ordahl, C. P. (1995). Early stages of chick somite development. Anatomy and Embryology, 191(5), 381-396.
Clayton, S. W., Angermeier, A., Halbrooks, J. E., McCardell, R., & Serra, R. (2022). TGFβ signaling is required for sclerotome resegmentation during development of the spinal column in Gallus gallus. Developmental Biology, 488, 120-130. https://doi.org/10.1016/j.ydbio.2022.05.013
Clayton, S. W., Ban, G. I., Liu, C., & Serra, R. (2020). Canonical and noncanonical TGF-β signaling regulate fibrous tissue differentiation in the axial skeleton. Scientific Reports, 10(1), 21364. https://doi.org/10.1038/s41598-020-78206-4
Criswell, K. E., & Gillis, J. A. (2020). Resegmentation is an ancestral feature of the gnathostome vertebral skeleton. eLife, 9, e51696. https://doi.org/10.7554/eLife.51696
Deutsch, U., Dressler, G. R., & Gruss, P. (1988). Pax 1, a member of a paired box homologous murine gene family, is expressed in segmented structures during development. Cell, 53(4), 617-625.
Dietrich, S., & Gruss, P. (1995). undulated phenotypes suggest a role of Pax-1 for the development of vertebral and extravertebral structures. Developmental Biology, 167(2), 529-548. https://doi.org/10.1006/dbio.1995.1047
Draga, M., Heim, K., Batke, R., Wegele, M., Pröls, F., & Scaal, M. (2019). Somite development in the avian tail. Journal of Anatomy, 235(4), 716-724. https://doi.org/10.1111/joa.13032
Duband, J. L., Dufour, S., Hatta, K., Takeichi, M., Edelman, G. M., & Thiery, J. P. (1987). Adhesion molecules during somitogenesis in the avian embryo. The Journal of Cell Biology, 104(5), 1361-1374.
Ebensperger, C., Wilting, J., Brand-Saberi, B., Mizutani, Y., Christ, B., Balling, R., & Koseki, H. (1995). Pax-1, a regulator of sclerotome development is induced by notochord and floor plate signals in avian embryos. Anatomy and Embryology, 191(4), 297-310.
von Ebner, V. (1888). Urwirbel und Neugliederung der Wirbelsäule (Vol. III, pp. 194-206). Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften.
Evans, D. J. R. (2003). Contribution of somitic cells to the avian ribs. Developmental Biology, 256(1), 115-127.
Fan, C. M., Porter, J. A., Chiang, C., Chang, D. T., Beachy, P. A., & Tessier-Lavigne, M. (1995). Long-range sclerotome induction by sonic hedgehog: Direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway. Cell, 81(3), 457-465.
Fan, C. M., & Tessier-Lavigne, M. (1994). Patterning of mammalian somites by surface ectoderm and notochord: Evidence for sclerotome induction by a hedgehog homolog. Cell, 79(7), 1175-1186.
Furumoto, T., Miura, N., Akasaka, T., Mizutani-Koseki, Y., Sudo, H., Fukuda, K., Maekawa, M., Yuasa, S., Fu, Y., Moriya, H., Taniguchi, M., Imai, K., Dahl, E., Balling, R., Pavlova, M., Gossler, A., & Koseki, H. (1999). Notochord-dependent expression of MFH1 and PAX1 cooperates to maintain the proliferation of sclerotome cells during the vertebral column development. Developmental Biology, 210(1), 15-29. https://doi.org/10.1006/dbio.1999.9261
Galea, G. L., Zein, M. R., Allen, S., & Francis-West, P. (2021). Making and shaping endochondral and intramembranous bones. Developmental Dynamics, 250(3), 414-449. https://doi.org/10.1002/dvdy.278
Halata, Z., Grim, M., & Christ, B. (1990). Origin of spinal cord meninges, sheaths of peripheral nerves, and cutaneous receptors including Merkel cells. An experimental and ultrastructural study with avian chimeras. Anatomy and Embryology, 182(6), 529-537. https://doi.org/10.1007/BF00186459
Harfe, B. D. (2022). Intervertebral disc repair and regeneration: Insights from the notochord. Seminars in Cell & Developmental Biology, 127, 3-9. https://doi.org/10.1016/j.semcdb.2021.11.012
Hatta, K., Takagi, S., Fujisawa, H., & Takeichi, M. (1987). Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Developmental Biology, 120(1), 215-227. https://doi.org/10.1016/0012-1606(87)90119-9
Hayes, A., Hughes, C., Ralphs, J., & Caterson, B. (2011). Chondroitin sulphate sulphation motif expression in the ontogeny of the intervertebral disc. European Cells and Materials, 21, 1-14.
Hayes, A., Isaacs, M., Hughes, C., Caterson, B., & Ralphs, J. (2011). Collagen fibrillogenesis in the development of the annulus fibrosus of the intervertebral disc. European Cells and Materials, 22, 226-241. https://doi.org/10.22203/ecm.v022a18
Hirsinger, E., Duprez, D., Jouve, C., Malapert, P., Cooke, J., & Pourquié, O. (1997). Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning. Development, 124(22), 4605-4614. https://doi.org/10.1242/dev.124.22.4605
Huang, R., Stolte, D., Kurz, H., Ehehalt, F., Cann, G. M., Stockdale, F. E., Patel, K., & Christ, B. (2003). Ventral axial organs regulate expression of myotomal Fgf-8 that influences rib development. Developmental Biology, 255(1), 30-47.
Huang, R., Zhi, Q., Brand-Saberi, B., & Christ, B. (2000). New experimental evidence for somite resegmentation. Anatomy and Embryology, 202(3), 195-200.
Huang, R., Zhi, Q., Neubüser, A., Müller, T. S., Brand-Saberi, B., Christ, B., & Wilting, J. (1996). Function of somite and somitocoele cells in the formation of the vertebral motion segment in avian embryos. Cells Tissues Organs, 155(4), 231-241.
Huang, R., Zhi, Q., Schmidt, C., Wilting, J., Brand-Saberi, B., & Christ*, B. (2000). Sclerotomal origin of the ribs. Development, 127(3), 527-532.
Huang, R., Zhi, Q., Wilting, J., & Christ, B. (1994). The fate of somitocoele cells in avian embryos. Anatomy and Embryology, 190(3), 243-250.
Hughes, D. S., Keynes, R. J., & Tannahill, D. (2009). Extensive molecular differences between anterior- and posterior-half-sclerotomes underlie somite polarity and spinal nerve segmentation. BMC Developmental Biology, 9, 30. https://doi.org/10.1186/1471-213X-9-30
Jacob, M., Jacob, H. J., & Christ, B. (1975). Die frühe differenzierung des chordanahen bindegewebes. Raster-und transmissionselektronenmikroskopische untersuchungen an hühnerembryonen. Experientia, 31(9), 1083-1086.
Johnson, R. L., Laufer, E., Riddle, R. D., & Tabin, C. (1994). Ectopic expression of Sonic hedgehog alters dorsal-ventral patterning of somites. Cell, 79(7), 1165-1173. https://doi.org/10.1016/0092-8674(94)90008-6
Kahn, L., Biro, E. E., Smith, R. D., & Bui, C. J. (2015). Spina bifida occulta and aperta: A review of current treatment paradigms. Journal of Neurosurgical Sciences, 59(1), 79-90.
Kelly Kuan, C. Y., Tannahill, D., Cook, G. M. W., & Keynes, R. J. (2004). Somite polarity and segmental patterning of the peripheral nervous system. Mechanisms of Development, 121(9), 1055-1068. https://doi.org/10.1016/j.mod.2004.05.001
Khabyuk, J., Pröls, F., Draga, M., & Scaal, M. (2022). Development of ribs and intercostal muscles in the chicken embryo. Journal of Anatomy, 241(3), 831-845. https://doi.org/10.1111/joa.13716
Koseki, H., Wallin, J., Wilting, J., Mizutani, Y., Kispert, A., Ebensperger, C., Herrmann, B. G., Christ, B., & Balling, R. (1993). A role for Pax-1 as a mediator of notochordal signals during the dorsoventral specification of vertebrae. Development, 119(3), 649-660. https://doi.org/10.1242/dev.119.3.649
Krück, S., Nesemann, J., & Scaal, M. (2013). Development of somites, muscle, and skeleton is independent of signals from the Wolffian duct. Developmental Dynamics, 242(8), 941-948. https://doi.org/10.1002/dvdy.23986
Krull, C. E., Lansford, R., Gale, N. W., Collazo, A., Marcelle, C., Yancopoulos, G. D., Fraser, S. E., & Bronner-Fraser, M. (1997). Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Current Biology, 7(8), 571-580. https://doi.org/10.1016/s0960-9822(06)00256-9
Kuta, A., Mao, Y., Martin, T., Ferreira de Sousa, C., Whiting, D., Zakaria, S., Crespo-Enriquez, I., Evans, P., Balczerski, B., Mankoo, B., Irvine, K. D., & Francis-West, P. H. (2016). Fat4-Dchs1 signalling controls cell proliferation in developing vertebrae. Development, 143(13), 2367-2375. https://doi.org/10.1242/dev.131037
Leitges, M., Neidhardt, L., Haenig, B., Herrmann, B. G., & Kispert, A. (2000). The paired homeobox gene Uncx4.1 specifies pedicles, transverse processes and proximal ribs of the vertebral column. Development, 127(11), 2259-2267.
Linker, C., Lesbros, C., Gros, J., Burrus, L. W., Rawls, A., & Marcelle, C. (2005). β-Catenin-dependent Wnt signalling controls the epithelial organisation of somites through the activation of paraxis. Development, 132(17), 3895-3905.
Löpez, B. C., Dívid, K. M., & Crockard, H. A. (1997). Inadequate PAX-1 gene expression as a cause of agenesis of the thoracolumbar spine with failure of segmentation. Case report. Journal of Neurosurgery, 86(6), 1018-1021. https://doi.org/10.3171/jns.1997.86.6.1018
Mansouri, A., Voss, A. K., Thomas, T., Yokota, Y., & Gruss, P. (2000). Uncx4.1 is required for the formation of the pedicles and proximal ribs and acts upstream of Pax9. Development, 127(11), 2251-2258.
Maschner, A., Krück, S., Draga, M., Pröls, F., & Scaal, M. (2016). Developmental dynamics of occipital and cervical somites. Journal of Anatomy, 229(5), 601-609. https://doi.org/10.1111/joa.12516
McGaughran, J. M., Oates, A., Donnai, D., Read, A. P., & Tassabehji, M. (2003). Mutations in PAX1 may be associated with Klippel-Feil syndrome. European Journal of Human Genetics, 11(6), 468-474. https://doi.org/10.1038/sj.ejhg.5200987
McMahon, J. A., Takada, S., Zimmerman, L. B., Fan, C. M., Harland, R. M., & McMahon, A. P. (1998). Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes & Development, 12(10), 1438-1452. https://doi.org/10.1101/gad.12.10.1438
Mittapalli, V. R., Huang, R., Patel, K., Christ, B., & Scaal, M. (2005). Arthrotome: A specific joint forming compartment in the avian somite. Developmental Dynamics, 234(1), 48-53.
Monsoro-Burq, A. H., Duprez, D., Watanabe, Y., Bontoux, M., Vincent, C., Brickell, P., & Douarin, N. L. (1996). The role of bone morphogenetic proteins in vertebral development. Development, 122(11), 3607-3616.
Morimoto, M., Sasaki, N., Oginuma, M., Kiso, M., Igarashi, K., Aizaki, K., Kanno, J., & Saga, Y. (2007). The negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite. Development, 134(8), 1561-1569. https://doi.org/10.1242/dev.000836
Morin-Kensicki, E. M., Melancon, E., & Eisen, J. S. (2002). Segmental relationship between somites and vertebral column in zebrafish. Development, 129(16), 3851-3860.
Müller, T. S., Ebensperger, C., Neubüser, A., Koseki, H., Balling, R., Christ, B., & Wilting, J. (1996). Expression of avian Pax1 and Pax9 is intrinsically regulated in the pharyngeal endoderm, but depends on environmental influences in the paraxial mesoderm. Developmental Biology, 178(2), 403-417. https://doi.org/10.1006/dbio.1996.0227
Murchison, N. D., Price, B. A., Conner, D. A., Keene, D. R., Olson, E. N., Tabin, C. J., & Schweitzer, R. (2007). Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development, 134(14), 2697-2708. https://doi.org/10.1242/dev.001933
Murtaugh, L. C., Zeng, L., Chyung, J. H., & Lassar, A. B. (2001). The chick transcriptional repressor Nkx3.2 acts downstream of shh to promote BMP-dependent axial chondrogenesis. Developmental Cell, 1(3), 411-422.
Neidhardt, L. M., Kispert, A., & Herrmann, B. G. (1997). A mouse gene of the paired-related homeobox class expressed in the caudal somite compartment and in the developing vertebral column, kidney and nervous system. Development Genes and Evolution, 207(5), 330-339. https://doi.org/10.1007/s004270050120
Neubüser, A., Koseki, H., & Balling, R. (1995). Characterization and developmental expression of Pax9, a paired-box-containing gene related to Pax1. Developmental Biology, 170(2), 701-716. https://doi.org/10.1006/dbio.1995.1248
Newgreen, D. F., Scheel, M., & Kastner, V. (1986). Morphogenesis of sclerotome and neural crest in avian embryos. In vivo and in vitro studies on the role of notochordal extracellular material. Cell and Tissue Research, 244(2), 299-313.
Ordahl, C. P., & Le Douarin, N. M. (1992). Two myogenic lineages within the developing somite. Development, 114(2), 339-353.
Peters, H., Wilm, B., Sakai, N., Imai, K., Maas, R., & Balling, R. (1999). Pax1 and Pax9 synergistically regulate vertebral column development. Development, 126(23), 5399-5408.
Pickett, E. A., Olsen, G. S., & Tallquist, M. D. (2008). Disruption of PDGFRα-initiated PI3K activation and migration of somite derivatives leads to spina bifida. Development, 135(3), 589-598. https://doi.org/10.1242/dev.013763
Piekarski, N., & Olsson, L. (2014). Resegmentation in the Mexican axolotl, Ambystoma mexicanum. Journal of Morphology, 275(2), 141-152. https://doi.org/10.1002/jmor.20204
Pourquié, O. (2022). A brief history of the segmentation clock. Developmental Biology, 485, 24-36. https://doi.org/10.1016/j.ydbio.2022.02.011
Pourquié, O., Fan, C. M., Coltey, M., Hirsinger, E., Watanabe, Y., Bréant, C., Francis-West, P., Brickell, P., Tessier-Lavigne, M., & Le Douarin, N. M. (1996). Lateral and axial signals involved in avian somite patterning: A role for BMP4. Cell, 84(3), 461-471.
Pryce, B. A., Watson, S. S., Murchison, N. D., Staverosky, J. A., Dünker, N., & Schweitzer, R. (2009). Recruitment and maintenance of tendon progenitors by TGFβ signaling are essential for tendon formation. Development, 136(8), 1351-1361. https://doi.org/10.1242/dev.027342
Rabl, C. (1888). Über die differenzierung des mesoderms. Verh Anatomy Ges, 2, 140-146.
Remak, R. (1850). Untersuchungen über die Entwickelung der Wirbelthiere. Reimer.
Rickmann, M., Fawcett, J. W., & Keynes, R. J. (1985). The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. Development, 90, 437-455.
Rodrigo, I., Bovolenta, P., Mankoo, B. S., & Imai, K. (2004). Meox homeodomain proteins are required for Bapx1 expression in the sclerotome and activate its transcription by direct binding to its promoter. Molecular and Cellular Biology, 24(7), 2757-2766.
Rodrigo, I., Hill, R. E., Balling, R., Münsterberg, A., & Imai, K. (2003). Pax1 and Pax9 activate Bapx1 to induce chondrogenic differentiation in the sclerotome. Development, 130(3), 473-482.
Sasaki, N., Kiso, M., Kitagawa, M., & Saga, Y. (2011). The repression of Notch signaling occurs via the destabilization of mastermind-like 1 by Mesp2 and is essential for somitogenesis. Development, 138(1), 55-64. https://doi.org/10.1242/dev.055533
Scaal, M. (2016). Early development of the vertebral column. Seminars in Cell & Developmental Biology, 49, 83-91. https://doi.org/10.1016/j.semcdb.2015.11.003
Scaal, M. (2021). Development of the amniote ventrolateral body wall. Developmental Dynamics, 250(1), 39-59. https://doi.org/10.1002/dvdy.193
Scaal, M., & Christ, B. (2004). Formation and differentiation of the avian dermomyotome. Anatomy and Embryology, 208(6), 411-424.
Schaeffer, J., Weber, I. P., Thompson, A. J., Keynes, R. J., & Franze, K. (2022). Axons in the chick embryo follow soft pathways through developing somite segments. Frontiers in Cell and Developmental Biology, 10, 917589. https://doi.org/10.3389/fcell.2022.917589
Schrägle, J., Huang, R., Christ, B., & Pröls, F. (2004). Control of the temporal and spatial Uncx4.1 expression in the paraxial mesoderm of avian embryos. Anatomy and Embryology, 208(4), 323-332. https://doi.org/10.1007/s00429-004-0404-3
Schwarz, Q., Maden, C. H., Davidson, K., & Ruhrberg, C. (2009). Neuropilin-mediated neural crest cell guidance is essential to organise sensory neurons into segmented dorsal root ganglia. Development, 136(11), 1785-1789. https://doi.org/10.1242/dev.034322
Schwarz, Q., Maden, C. H., Vieira, J. M., & Ruhrberg, C. (2009). Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification. Proceedings of the National Academy of Sciences of the United States of America, 106(15), 6164-6169. https://doi.org/10.1073/pnas.0811521106
Schweitzer, R., Chyung, J. H., Murtaugh, L. C., Brent, A. E., Rosen, V., Olson, E. N., Lassar, A., & Tabin, C. J. (2001). Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development, 128(19), 3855-3866.
Senthinathan, B., Sousa, C., Tannahill, D., & Keynes, R. (2012). The generation of vertebral segmental patterning in the chick embryo. Journal of Anatomy, 220(6), 591-602. https://doi.org/10.1111/j.1469-7580.2012.01497.x
Sharma, A., Kumar, A., & Kapila, A. (2022). Co-existence of spina bifida occulta and lumbosacral transitional vertebra in patients presenting with lower back pain. Rheumatology, 60(1), 70-75. https://doi.org/10.5114/reum.2022.114171
Shukunami, C., Takimoto, A., Nishizaki, Y., Yoshimoto, Y., Tanaka, S., Miura, S., Watanabe, H., Sakuma, T., Yamamoto, T., Kondoh, G., & Hiraki, Y. (2018). Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes. Scientific Reports, 8(1), 3155. https://doi.org/10.1038/s41598-018-21194-3
Shukunami, C., Takimoto, A., Oro, M., & Hiraki, Y. (2006). Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Developmental Biology, 298(1), 234-247. https://doi.org/10.1016/j.ydbio.2006.06.036
Sivakamasundari, V., Kraus, P., Sun, W., Hu, X., Lim, S. L., Prabhakar, S., & Lufkin, T. (2016). A developmental transcriptomic analysis of Pax1 and Pax9 in embryonic intervertebral disc development. Biology Open, 6(2), 187-199. https://doi.org/10.1242/bio.023218
Skuntz, S., Mankoo, B., Nguyen, M. T. T., Hustert, E., Nakayama, A., Tournier-Lasserve, E., Wright, C. V. E., Pachnis, V., Bharti, K., & Arnheiter, H. (2009). Lack of the mesodermal homeodomain protein MEOX1 disrupts sclerotome polarity and leads to a remodeling of the cranio-cervical joints of the axial skeleton. Developmental Biology, 332(2), 383-395. https://doi.org/10.1016/j.ydbio.2009.06.006
Smith, T. G., Sweetman, D., Patterson, M., Keyse, S. M., & Münsterberg, A. (2005). Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite. Development, 132(6), 1305-1314.
Smits, P., & Lefebvre, V. (2003). Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs. Development, 130(6), 1135-1148.
Sohn, P., Cox, M., Chen, D., & Serra, R. (2010). Molecular profiling of the developing mouse axial skeleton: a role for Tgfbr2 in the development of the intervertebral disc. BMC Developmental Biology, 10, 29. https://doi.org/10.1186/1471-213X-10-29
Solursh, M., Fisher, M., Meier, S., & Singley, C. T. (1979). The role of extracellular matrix in the formation of the sclerotome. Development, 54, 75-98.
Song, H., & Park, K. H. (2020). Regulation and function of SOX9 during cartilage development and regeneration. Seminars in Cancer Biology, 67(Pt 1), 12-23. https://doi.org/10.1016/j.semcancer.2020.04.008
Stafford, D. A., Brunet, L. J., Khokha, M. K., Economides, A. N., & Harland, R. M. (2011). Cooperative activity of noggin and gremlin 1 in axial skeleton development. Development, 138(5), 1005-1014. https://doi.org/10.1242/dev.051938
Stafford, D. A., Monica, S. D., & Harland, R. M. (2014). Follistatin interacts with Noggin in the development of the axial skeleton. Mechanisms of Development, 131, 78-85. https://doi.org/10.1016/j.mod.2013.10.001
Stamataki, D., Kastrinaki, M. C., Mankoo, B. S., Pachnis, V., & Karagogeos, D. (2001). Homeodomain proteins Mox1 and Mox2 associate with Pax1 and Pax3 transcription factors. FEBS Letters, 499(3), 274-278. https://doi.org/10.1016/s0014-5793(01)02556-x
Sudo, H., Takahashi, Y., Tonegawa, A., Arase, Y., Aoyama, H., Mizutani-Koseki, Y., Moriya, H., Wilting, J., Christ, B., & Koseki, H. (2001). Inductive signals from the somatopleure mediated by bone morphogenetic proteins are essential for the formation of the sternal component of avian ribs. Developmental Biology, 232(2), 284-300. https://doi.org/10.1006/dbio.2001.0198
Takahashi, Y., Kitajima, S., Inoue, T., Kanno, J., & Saga, Y. (2005). Differential contributions of Mesp1 and Mesp2 to the epithelialization and rostro-caudal patterning of somites. Development, 132(4), 787-796. https://doi.org/10.1242/dev.01597
Takahashi, Y., Monsoro-Burq, A. H., Bontoux, M., & Le Douarin, N. M. (1992). A role for Quox-8 in the establishment of the dorsoventral pattern during vertebrate development. Proceedings of the National Academy of Sciences of the United States of America, 89(21), 10237-10241. https://doi.org/10.1073/pnas.89.21.10237
Takahashi, Y., Takagi, A., Hiraoka, S., Koseki, H., Kanno, J., Rawls, A., & Saga, Y. (2007). Transcription factors Mesp2 and paraxis have critical roles in axial musculoskeletal formation. Developmental Dynamics, 236(6), 1484-1494. https://doi.org/10.1002/dvdy.21178
Takimoto, A., Kokubu, C., Watanabe, H., Sakuma, T., Yamamoto, T., Kondoh, G., Hiraki, Y., & Shukunami, C. (2019). Differential transactivation of the upstream aggrecan enhancer regulated by PAX1/9 depends on SOX9-driven transactivation. Scientific Reports, 9(1), 4605. https://doi.org/10.1038/s41598-019-40810-4
Takimoto, A., Mohri, H., Kokubu, C., Hiraki, Y., & Shukunami, C. (2013). Pax1 acts as a negative regulator of chondrocyte maturation. Experimental Cell Research, 319(20), 3128-3139. https://doi.org/10.1016/j.yexcr.2013.09.015
Tallquist, M. D., Weismann, K. E., Hellström, M., & Soriano, P. (2000). Early myotome specification regulates PDGFA expression and axial skeleton development. Development, 127(23), 5059-5070.
Tani, S., Chung, U., Ohba, S., & Hojo, H. (2020). Understanding paraxial mesoderm development and sclerotome specification for skeletal repair. Experimental & Molecular Medicine, 52(8), 1166-1177. https://doi.org/10.1038/s12276-020-0482-1
Teillet, M. A., Kalcheim, C., & Le Douarin, N. M. (1987). Formation of the dorsal root ganglia in the avian embryo: Segmental origin and migratory behavior of neural crest progenitor cells. Developmental Biology, 120(2), 329-347. https://doi.org/10.1016/0012-1606(87)90236-3
Teppner, I., Becker, S., de Angelis, M. H., Gossler, A., & Beckers, J. (2007). Compartmentalised expression of Delta-like 1 in epithelial somites is required for the formation of intervertebral joints. BMC Developmental Biology, 7, 68. https://doi.org/10.1186/1471-213X-7-68
Vinagre, T., Moncaut, N., Carapuço, M., Nóvoa, A., Bom, J., & Mallo, M. (2010). Evidence for a myotomal Hox/Myf cascade governing nonautonomous control of rib specification within global vertebral domains. Developmental Cell, 18(4), 655-661. https://doi.org/10.1016/j.devcel.2010.02.011
Wallin, J., Wilting, J., Koseki, H., Fritsch, R., Christ, B., & Balling, R. (1994). The role of Pax-1 in axial skeleton development. Development, 120(5), 1109-1121.
Wang, H. U., & Anderson, D. J. (1997). Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron, 18(3), 383-396. https://doi.org/10.1016/s0896-6273(00)81240-4
Wang, Y., & Serra, R. (2012). PDGF mediates TGFβ-induced migration during development of the spinous process. Developmental Biology, 365(1), 110-117. https://doi.org/10.1016/j.ydbio.2012.02.013
Ward, L., Evans, S. E., & Stern, C. D. (2017). A resegmentation-shift model for vertebral patterning. Journal of Anatomy, 230(2), 290-296. https://doi.org/10.1111/joa.12540
Ward, L., Pang, A. S. W., Evans, S. E., & Stern, C. D. (2018). The role of the notochord in amniote vertebral column segmentation. Developmental Biology, 439(1), 3-18. https://doi.org/10.1016/j.ydbio.2018.04.005
Watanabe, Y., & Le Douarin, N. M. (1996). A role for BMP-4 in the development of subcutaneous cartilage. Mechanisms of Development, 57(1), 69-78. https://doi.org/10.1016/0925-4773(96)00534-5
Watterson, R. L., Fowler, I., & Fowler, B. J. (1954). The role of the neural tube and notochord in development of the axial skeleton of the chick. American Journal of Anatomy, 95(3), 337-399. https://doi.org/10.1002/aja.1000950302
Williams, L. W. (1910). The somites of the chick. American Journal of Anatomy, 11, 55-100.
Williams, S., Alkhatib, B., & Serra, R. (2019). Development of the axial skeleton and intervertebral disc. Current Topics in Developmental Biology, 133, 49-90. https://doi.org/10.1016/bs.ctdb.2018.11.018
Wilting, J., Kurz, H., Brand-Saberi, B., Steding, G., Yang, Y., Hasselhorn, H. M., Epperlein, H. H., & Christ, B. (1994). Kinetics and differentiation of somite cells forming the vertebral column: Studies on human and chick embryos. Anatomy and Embryology, 190(6), 573-581.
Winnier, G. E., Hargett, L., & Hogan, B. L. (1997). The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. Genes & Development, 11(7), 926-940. https://doi.org/10.1101/gad.11.7.926
Wood, W. M., Otis, C., Etemad, S., & Goldhamer, D. J. (2020). Development and patterning of rib primordia are dependent on associated musculature. Developmental Biology, 468(1-2), 133-145. https://doi.org/10.1016/j.ydbio.2020.07.015
Wu, W., Kong, X., Jia, Y., Jia, Y., Ou, W., Dai, C., Li, G., & Gao, R. (2022). An overview of PAX1: Expression, function and regulation in development and diseases. Frontiers in Cell and Developmental Biology, 10, 1051102. https://doi.org/10.3389/fcell.2022.1051102
Zeng, L., Kempf, H., Murtaugh, L. C., Sato, M. E., & Lassar, A. B. (2002). Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes & Development, 16(15), 1990-2005. https://doi.org/10.1101/gad.1008002