RNA sequencing and target long-read sequencing reveal an intronic transposon insertion causing aberrant splicing.


Journal

Journal of human genetics
ISSN: 1435-232X
Titre abrégé: J Hum Genet
Pays: England
ID NLM: 9808008

Informations de publication

Date de publication:
15 Dec 2023
Historique:
received: 09 08 2023
accepted: 01 12 2023
revised: 28 11 2023
medline: 16 12 2023
pubmed: 16 12 2023
entrez: 15 12 2023
Statut: aheadofprint

Résumé

More than half of cases with suspected genetic disorders remain unsolved by genetic analysis using short-read sequencing such as exome sequencing (ES) and genome sequencing (GS). RNA sequencing (RNA-seq) and long-read sequencing (LRS) are useful for interpretation of candidate variants and detection of structural variants containing repeat sequences, respectively. Recently, adaptive sampling on nanopore sequencers enables target LRS more easily. Here, we present a Japanese girl with premature chromatid separation (PCS)/mosaic variegated aneuploidy (MVA) syndrome. ES detected a known pathogenic maternal heterozygous variant (c.1402-5A>G) in intron 10 of BUB1B (NM_001211.6), a known responsive gene for PCS/MVA syndrome with autosomal recessive inheritance. Minigene splicing assay revealed that almost all transcripts from the c.1402-5G allele have mis-splicing with 4-bp insertion. GS could not detect another pathogenic variant, while RNA-seq revealed abnormal reads in intron 2. To extensively explore variants in intron 2, we performed adaptive sampling and identified a paternal 3.0 kb insertion. Consensus sequence of 16 reads spanning the insertion showed that the insertion consists of Alu and SVA elements. Realignment of RNA-seq reads to the new reference sequence containing the insertion revealed that 16 reads have 5' splice site within the insertion and 3' splice site at exon 3, demonstrating causal relationship between the insertion and aberrant splicing. In addition, immunoblotting showed severely diminished BUB1B protein level in patient derived cells. These data suggest that detection of transcriptomic abnormalities by RNA-seq can be a clue for identifying pathogenic variants, and determination of insert sequences is one of merits of LRS.

Identifiants

pubmed: 38102195
doi: 10.1038/s10038-023-01211-8
pii: 10.1038/s10038-023-01211-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Japan Agency for Medical Research and Development (AMED)
ID : JP23ek01099674
Organisme : Japan Agency for Medical Research and Development (AMED)
ID : JP23ek0109637
Organisme : Japan Agency for Medical Research and Development (AMED)
ID : JP23ek0109549
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP20H03641
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : JP23H02875
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 23K14944
Organisme : MEXT | Japan Society for the Promotion of Science (JSPS)
ID : 22K20852

Informations de copyright

© 2023. The Author(s), under exclusive licence to The Japan Society of Human Genetics.

Références

Hanks S, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D, et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet. 2004;36:1159–61.
doi: 10.1038/ng1449 pubmed: 15475955
Garcia-Castillo H, Vasquez-Velasquez AI, Rivera H, Barros-Nunez P. Clinical and genetic heterogeneity in patients with mosaic variegated aneuploidy: delineation of clinical subtypes. Am J Med Genet A. 2008;146A:1687–95.
doi: 10.1002/ajmg.a.32315 pubmed: 18548531
van Vuuren RJ, Visagie MH, Theron AE, Joubert AM. Antimitotic drugs in the treatment of cancer. Cancer Chemother Pharm. 2015;76:1101–12.
doi: 10.1007/s00280-015-2903-8
Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol. 2007;8:379–93.
doi: 10.1038/nrm2163 pubmed: 17426725
Matsuura S, Matsumoto Y, Morishima K, Izumi H, Matsumoto H, Ito E, et al. Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. Am J Med Genet A. 2006;140:358–67.
doi: 10.1002/ajmg.a.31069 pubmed: 16411201
Kato M, Kato T, Hosoba E, Ohashi M, Fujisaki M, Ozaki M, et al. PCS/MVA syndrome caused by an Alu insertion in the BUB1B gene. Hum Genome Var. 2017;4:17021.
doi: 10.1038/hgv.2017.21 pubmed: 28611924 pmcid: 5462940
Ochiai H, Miyamoto T, Kanai A, Hosoba K, Sakuma T, Kudo Y, et al. TALEN-mediated single-base-pair editing identification of an intergenic mutation upstream of BUB1B as causative of PCS (MVA) syndrome. Proc Natl Acad Sci USA. 2014;111:1461–6.
doi: 10.1073/pnas.1317008111 pubmed: 24344301
Lionel AC, Costain G, Monfared N, Walker S, Reuter MS, Hosseini SM, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med. 2018;20:435–43.
doi: 10.1038/gim.2017.119 pubmed: 28771251
Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet. 2017;18:14.
doi: 10.1186/s12863-017-0479-5 pubmed: 28193154 pmcid: 5307692
Palmer EE, Sachdev R, Macintosh R, Melo US, Mundlos S, Righetti S, et al. Diagnostic yield of whole genome sequencing after nondiagnostic exome sequencing or gene panel in developmental and epileptic encephalopathies. Neurology. 2021;96:e1770–e1782.
doi: 10.1212/WNL.0000000000011655 pubmed: 33568551
Kremer LS, Bader DM, Mertes C, Kopajtich R, Pichler G, Iuso A, et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun. 2017;8:15824.
doi: 10.1038/ncomms15824 pubmed: 28604674 pmcid: 5499207
Lee H, Huang AY, Wang LK, Yoon AJ, Renteria G, Eskin A, et al. Diagnostic utility of transcriptome sequencing for rare Mendelian diseases. Genet Med. 2020;22:490–9.
doi: 10.1038/s41436-019-0672-1 pubmed: 31607746
Murdock DR, Dai H, Burrage LC, Rosenfeld JA, Ketkar S, Muller MF, et al. Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing. J Clin Invest. 2021;131:e141500.
doi: 10.1172/JCI141500 pubmed: 33001864 pmcid: 7773386
Hiraide T, Shimizu K, Miyamoto S, Aoto K, Nakashima M, Yamaguchi T, et al. Genome sequencing and RNA sequencing of urinary cells reveal an intronic FBN1 variant causing aberrant splicing. J Hum Genet. 2022;67:387–92.
doi: 10.1038/s10038-022-01016-1 pubmed: 35067677
Aicher JK, Jewell P, Vaquero-Garcia J, Barash Y, Bhoj EJ. Mapping RNA splicing variations in clinically accessible and nonaccessible tissues to facilitate Mendelian disease diagnosis using RNA-seq. Genet Med. 2020;22:1181–90.
doi: 10.1038/s41436-020-0780-y pubmed: 32225167 pmcid: 7335339
Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, et al. Segmental duplications and their variation in a complete human genome. Science 2022;376:eabj6965.
doi: 10.1126/science.abj6965 pubmed: 35357917 pmcid: 8979283
Mastrorosa FK, Miller DE, Eichler EE. Applications of long-read sequencing to Mendelian genetics. Genome Med. 2023;15:42.
doi: 10.1186/s13073-023-01194-3 pubmed: 37316925 pmcid: 10266321
Song Z, Liang Y, Yang J. Nanopore detection assisted DNA information processing. Nanomaterials. 2022;12:3135.
doi: 10.3390/nano12183135 pubmed: 36144924 pmcid: 9504103
Miller DE, Sulovari A, Wang T, Loucks H, Hoekzema K, Munson KM, et al. Targeted long-read sequencing identifies missing disease-causing variation. Am J Hum Genet. 2021;108:1436–49.
doi: 10.1016/j.ajhg.2021.06.006 pubmed: 34216551 pmcid: 8387463
Loose M, Malla S, Stout M. Real-time selective sequencing using nanopore technology. Nat Methods. 2016;13:751–4.
doi: 10.1038/nmeth.3930 pubmed: 27454285 pmcid: 5008457
Watanabe K, Nakashima M, Kumada S, Mashimo H, Enokizono M, Yamada K, et al. Identification of two novel de novo TUBB variants in cases with brain malformations: case reports and literature review. J Hum Genet. 2021;66:1193–7.
doi: 10.1038/s10038-021-00956-4 pubmed: 34211110
Tadaka S, Hishinuma E, Komaki S, Motoike IN, Kawashima J, Saigusa D, et al. jMorp updates in 2020: large enhancement of multi-omics data resources on the general Japanese population. Nucleic Acids Res. 2021;49:D536–D544.
doi: 10.1093/nar/gkaa1034 pubmed: 33179747
Wai HA, Lord J, Lyon M, Gunning A, Kelly H, Cibin P, et al. Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance. Genet Med. 2020;22:1005–14.
doi: 10.1038/s41436-020-0766-9 pubmed: 32123317 pmcid: 7272326
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.e524.
doi: 10.1016/j.cell.2018.12.015 pubmed: 30661751
Cheng J, Nguyen TYD, Cygan KJ, Celik MH, Fairbrother WG, Avsec Z, et al. MMSplice: modular modeling improves the predictions of genetic variant effects on splicing. Genome Biol. 2019;20:48.
doi: 10.1186/s13059-019-1653-z pubmed: 30823901 pmcid: 6396468
Zeng T, Li YI. Predicting RNA splicing from DNA sequence using Pangolin. Genome Biol. 2022;23:103.
doi: 10.1186/s13059-022-02664-4 pubmed: 35449021 pmcid: 9022248
Hiraide T, Shimizu K, Okumura Y, Miyamoto S, Nakashima M, Ogata T, et al. A deep intronic TCTN2 variant activating a cryptic exon predicted by SpliceRover in a patient with Joubert syndrome. J Hum Genet. 2023;68:499–505.
doi: 10.1038/s10038-023-01143-3 pubmed: 36894704
Mitsuhashi S, Ohori S, Katoh K, Frith MC, Matsumoto N. A pipeline for complete characterization of complex germline rearrangements from long DNA reads. Genome Med. 2020;12:67.
doi: 10.1186/s13073-020-00762-1 pubmed: 32731881 pmcid: 7393826
Pavone P, Pappalardo XG, Mustafa N, Falsaperla R, Marino SD, Corsello G, et al. Pathogenic correlation between mosaic variegated aneuploidy 1 (MVA1) and a novel BUB1B variant: a reappraisal of a severe syndrome. Neurol Sci. 2022;43:6529–38.
doi: 10.1007/s10072-022-06247-w pubmed: 35804254 pmcid: 9616775
Miyamoto T, Porazinski S, Wang H, Borovina A, Ciruna B, Shimizu A, et al. Insufficiency of BUBR1, a mitotic spindle checkpoint regulator, causes impaired ciliogenesis in vertebrates. Hum Mol Genet. 2011;20:2058–70.
doi: 10.1093/hmg/ddr090 pubmed: 21389084
Zaidi D, Chinnappa K, Francis F. Primary cilia influence progenitor function during cortical development. Cells 2022;11:2895.
doi: 10.3390/cells11182895 pubmed: 36139475 pmcid: 9496791
Simmons AJ, Park R, Sterling NA, Jang MH, van Deursen JMA, Yen TJ, et al. Nearly complete deletion of BubR1 causes microcephaly through shortened mitosis and massive cell death. Hum Mol Genet. 2019;28:1822–36.
doi: 10.1093/hmg/ddz022 pubmed: 30668728 pmcid: 6522074
Choi CI, Yoo KH, Hussaini SM, Jeon BT, Welby J, Gan H, et al. The progeroid gene BubR1 regulates axon myelination and motor function. Aging. 2016;8:2667–88.
doi: 10.18632/aging.101032 pubmed: 27922816 pmcid: 5191862
Hancks DC, Kazazian HH Jr. Roles for retrotransposon insertions in human disease. Mob DNA. 2016;7:9.
doi: 10.1186/s13100-016-0065-9 pubmed: 27158268 pmcid: 4859970
Chu C, Zhao B, Park PJ, Lee EA. Identification and genotyping of transposable element insertions from genome sequencing data. Curr Protoc Hum Genet. 2020;107:e102.
doi: 10.1002/cphg.102 pubmed: 32662945 pmcid: 8906366
Mohamed M, Dang NT, Ogyama Y, Burlet N, Mugat B, Boulesteix M, et al. A transposon story: from TE content to TE dynamic invasion of drosophila genomes using the single-molecule sequencing technology from Oxford nanopore. Cells. 2020;9:1776.
doi: 10.3390/cells9081776 pubmed: 32722451 pmcid: 7465170

Auteurs

Ryota Kawakami (R)

Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.

Takuya Hiraide (T)

Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.

Kazuki Watanabe (K)

Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.

Sachiko Miyamoto (S)

Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.

Kota Hira (K)

Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.

Kazuyuki Komatsu (K)

Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.

Hidetoshi Ishigaki (H)

Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.

Kimiyoshi Sakaguchi (K)

Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.

Masato Maekawa (M)

Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.

Keita Yamashita (K)

Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.

Tokiko Fukuda (T)

Department of Hamamatsu Child Health and Developmental Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.

Isao Miyairi (I)

Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.

Tsutomu Ogata (T)

Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan.

Hirotomo Saitsu (H)

Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan. hsaitsu@hama-med.ac.jp.

Classifications MeSH