Brief Report: A Double-Blind, Placebo-Controlled, Crossover, Proof-of-Concept Study of Minocycline in Autism Spectrum Disorder.

Autism Autism spectrum disorder Clinical trial Minocycline

Journal

Journal of autism and developmental disorders
ISSN: 1573-3432
Titre abrégé: J Autism Dev Disord
Pays: United States
ID NLM: 7904301

Informations de publication

Date de publication:
15 Dec 2023
Historique:
accepted: 02 09 2023
medline: 16 12 2023
pubmed: 16 12 2023
entrez: 15 12 2023
Statut: aheadofprint

Résumé

Neuroinflammatory mechanisms have been implicated in the pathophysiology of autism spectrum disorder (ASD). Minocycline is a matrix metalloproteinase inhibitor 9 (MMP9) inhibitor tetracycline antibiotic with known anti-inflammatory properties. In preclinical animal models of ASD, minocycline has demonstrated potential positive effects on phenotypes that may have relevance to ASD. We conducted the first placebo-controlled study of minocycline in ASD. This double-blind, placebo-controlled crossover trial employed four week treatment periods with a two week washout period. Twenty-four 12-22 year olds (mean age 17.4 years; range 12.9-22.5 years) with ASD were enrolled. Overall minocycline was well tolerated. No minocycline-associated clinical changes were noted with treatment on any performance or clinician or caregiver completed measures were noted. We hypothesize that either minocycline does not have potential therapeutic effects in ASD or our project was underpowered to define potential subject subgroups who may potentially respond positively to this drug.

Identifiants

pubmed: 38102393
doi: 10.1007/s10803-023-06132-1
pii: 10.1007/s10803-023-06132-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Aman, M. G., Singh, N. N., Stewart, A. W., & Field, C. J. (1985). The Aberrant Behavior Checklist: A behavior rating scale for the assessment of treatment effects. American Journal of Mental Deficiency, 5, 485–491.
Amoss, R. T., et al. (2020). A Pilot study of cardiovascular reactivity in children with autism spectrum disorder. Seminars in Pediatric Neurology, 34, 100807. https://doi.org/10.1016/j.spen.2020.100807
doi: 10.1016/j.spen.2020.100807 pubmed: 32446441
Bortolanza, M., et al. (2018). Tetracycline repurposing in neurodegeneration: Focus on Parkinson’s disease. Journal of Neural Transmission (vienna), 125, 1403–1415. https://doi.org/10.1007/s00702-018-1913-1
doi: 10.1007/s00702-018-1913-1
Buller, K. M., Carty, M. L., Reinebrant, H. E., & Wixey, J. A. (2009). Minocycline: A neuroprotective agent for hypoxic-ischemic brain injury in the neonate? Journal of Neuroscience Research, 87, 599–608. https://doi.org/10.1002/jnr.21890
doi: 10.1002/jnr.21890 pubmed: 18831005
Carlezon, W. A., Jr., et al. (2019). Maternal and early postnatal immune activation produce sex-specific effects on autism-like behaviors and neuroimmune function in mice. Science and Reports, 9, 16928. https://doi.org/10.1038/s41598-019-53294-z
doi: 10.1038/s41598-019-53294-z
Casamassimo, P. S., Shellhart, W. C., & Hagerman, R. (1986). Fragile X syndrome: A review. Journal of Oral Medicine, 41, 228–233.
pubmed: 3537237
Cheng, Y. C., Huang, Y. C., & Huang, W. L. (2020). Heart rate variability in individuals with autism spectrum disorders: A meta-analysis. Neuroscience and Biobehavioral Reviews, 118, 463–471. https://doi.org/10.1016/j.neubiorev.2020.08.007
doi: 10.1016/j.neubiorev.2020.08.007 pubmed: 32818581
Dansie, L. E., et al. (2013). Long-lasting effects of minocycline on behavior in young but not adult fragile X mice. Neuroscience, 246, 186–198. https://doi.org/10.1016/j.neuroscience.2013.04.058
doi: 10.1016/j.neuroscience.2013.04.058 pubmed: 23660195
Dziembowska, M., et al. (2013). High MMP-9 activity levels in fragile X syndrome are lowered by minocycline. American Journal of Medical Genetics. Part A, 161A, 1897–1903. https://doi.org/10.1002/ajmg.a.36023
doi: 10.1002/ajmg.a.36023 pubmed: 23824974
Elewa, H. F., Hilali, H., Hess, D. C., Machado, L. S., & Fagan, S. C. (2006). Minocycline for short-term neuroprotection. Pharmacotherapy, 26, 515–521. https://doi.org/10.1592/phco.26.4.515
doi: 10.1592/phco.26.4.515 pmcid: 3171989 pubmed: 16553511
Estes, M. L., & McAllister, A. K. (2015). Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nature Reviews Neuroscience, 16, 469–486. https://doi.org/10.1038/nrn3978
doi: 10.1038/nrn3978 pmcid: 5650494 pubmed: 26189694
Ewen, J. B., Sweeney, J. A., & Potter, W. Z. (2019). Conceptual, regulatory and strategic imperatives in the early days of EEG-based biomarker validation for neurodevelopmental disabilities. Frontiers in Integrative Neuroscience, 13, 45–45. https://doi.org/10.3389/fnint.2019.00045
doi: 10.3389/fnint.2019.00045 pmcid: 6712089 pubmed: 31496945
Frazier, T. W., Krishna, J., Klingemier, E., Beukemann, M., Nawabit, R., & Ibrahim, S. (2017). A randomized, crossover trial of a novel sound-to-sleep mattress technology in children with Autism and sleep difficulties. Journal of Clinical Sleep Medicine, 13, 95–104. https://doi.org/10.5664/jcsm.6398
doi: 10.5664/jcsm.6398 pmcid: 5181622 pubmed: 27784416
Gesundheit, B., et al. (2013). Immunological and autoimmune considerations of Autism Spectrum Disorders. Journal of Autoimmunity, 44, 1–7. https://doi.org/10.1016/j.jaut.2013.05.005
doi: 10.1016/j.jaut.2013.05.005 pubmed: 23867105
Guy, W. (1976). ECDEU assessment manual for psychopharmacology, Publication No. 76–338. Washington, DC: U.S. DHEW, NIMH.
Haigh, S. M., Walford, T. P., & Brosseau, P. (2021). Heart rate variability in Schizophrenia and Autism. Front Psychiatry, 12, 760396. https://doi.org/10.3389/fpsyt.2021.760396
doi: 10.3389/fpsyt.2021.760396 pmcid: 8656307 pubmed: 34899423
Kaufmann, W. E., et al. (2017). Autism spectrum disorder in fragile X syndrome: Cooccurring conditions and current treatment. Pediatrics, 139, S194–S206. https://doi.org/10.1542/peds.2016-1159F
doi: 10.1542/peds.2016-1159F pmcid: 5619699 pubmed: 28814540
Koistinaho, J., Yrjanheikki, J., Kauppinen, T., & Koistinaho, M. (2004). Tetracycline derivatives as anti-inflammatory agents and potential agents in stroke treatment. Ernst Schering Research Foundation Workshop. https://doi.org/10.1007/978-3-662-05426-0_6
doi: 10.1007/978-3-662-05426-0_6 pubmed: 15032056
Kumar, H., & Sharma, B. (2016). Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats. Brain Research, 1630, 83–97. https://doi.org/10.1016/j.brainres.2015.10.052
doi: 10.1016/j.brainres.2015.10.052 pubmed: 26551768
Leigh, M. J., et al. (2013). A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile x syndrome. Journal of Developmental and Behavioral Pediatrics, 34, 147–155. https://doi.org/10.1097/DBP.0b013e318287cd17
doi: 10.1097/DBP.0b013e318287cd17 pmcid: 3706260 pubmed: 23572165
Lord, C., M. Rutter, P.C. DiLavore, S. Risi, K. Gotham, S. Bishop (2012). Autism diagnostic observation schedule: ADOS-2, Western Psychological Services Los Angeles, CA.
Lovelace, J. W., Ethell, I. M., Binder, D. K., & Razak, K. A. (2020). Minocycline treatment reverses sound evoked EEG abnormalities in a mouse model of fragile X syndrome. Frontiers in Neuroscience, 14, 771. https://doi.org/10.3389/fnins.2020.00771
doi: 10.3389/fnins.2020.00771 pmcid: 7417521 pubmed: 32848552
Machado, L. S., Kozak, A., Ergul, A., Hess, D. C., Borlongan, C. V., & Fagan, S. C. (2006). Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neuroscience, 7, 56. https://doi.org/10.1186/1471-2202-7-56
doi: 10.1186/1471-2202-7-56 pmcid: 1543649 pubmed: 16846501
Markowitz, L. A., Reyes, C., Embacher, R. A., Speer, L. L., Roizen, N., & Frazier, T. W. (2016). Development and psychometric evaluation of a psychosocial quality-of-life questionnaire for individuals with autism and related developmental disorders. Autism, 20, 832–844. https://doi.org/10.1177/1362361315611382
doi: 10.1177/1362361315611382 pubmed: 26658953
McDougle, C. J., et al. (2015). Toward an immune-mediated subtype of autism spectrum disorder. Brain Research, 1617, 72–92. https://doi.org/10.1016/j.brainres.2014.09.048
doi: 10.1016/j.brainres.2014.09.048 pubmed: 25445995
Miyazaki, S., Hiraoka, Y., Hidema, S., & Nishimori, K. (2016). Prenatal minocycline treatment alters synaptic protein expression, and rescues reduced mother call rate in oxytocin receptor-knockout mice. Biochemical and Biophysical Research Communications, 472, 319–323. https://doi.org/10.1016/j.bbrc.2016.02.109
doi: 10.1016/j.bbrc.2016.02.109 pubmed: 26926566
Morgan, J. T., et al. (2010). Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biological Psychiatry, 68, 368–376. https://doi.org/10.1016/j.biopsych.2010.05.024
doi: 10.1016/j.biopsych.2010.05.024 pubmed: 20674603
Pardo, C. A., et al. (2013). A pilot open-label trial of minocycline in patients with autism and regressive features. Journal of Neurodevelopmental Disorders, 5, 9. https://doi.org/10.1186/1866-1955-5-9
doi: 10.1186/1866-1955-5-9 pmcid: 3663771 pubmed: 23566357
Paribello, C., et al. (2010). Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurology, 10, 91. https://doi.org/10.1186/1471-2377-10-91
doi: 10.1186/1471-2377-10-91 pmcid: 2958860 pubmed: 20937127
Popovic, N., Schubart, A., Goetz, B. D., Zhang, S. C., Linington, C., & Duncan, I. D. (2002). Inhibition of autoimmune encephalomyelitis by a tetracycline. Annals of Neurology, 51, 215–223. https://doi.org/10.1002/ana.10092
doi: 10.1002/ana.10092 pubmed: 11835378
Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. (1998). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20, 310–319. https://doi.org/10.1076/jcen.20.3.310.823
doi: 10.1076/jcen.20.3.310.823 pubmed: 9845158
Rodriguez, J. I., & Kern, J. K. (2011). Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neuron Glia Biology, 7, 205–213. https://doi.org/10.1017/S1740925X12000142
doi: 10.1017/S1740925X12000142 pmcid: 3523548 pubmed: 22874006
Rotschafer, S. E., Trujillo, M. S., Dansie, L. E., Ethell, I. M., & Razak, K. A. (2012). Minocycline treatment reverses ultrasonic vocalization production deficit in a mouse model of Fragile X Syndrome. Brain Research, 1439, 7–14. https://doi.org/10.1016/j.brainres.2011.12.041
doi: 10.1016/j.brainres.2011.12.041 pubmed: 22265702
Ryan, J. J., Kreiner, D. S., Teichner, G., & Gontkovsky, S. T. (2021). Validity of the Wechsler abbreviated scale ofqa intelligence, Second Edition (WASI-II) as an indicator of neurological disease/injury: A pilot study. Brain Injury., 35, 1624–1629.
doi: 10.1080/02699052.2021.1978547 pubmed: 34546137
Sahin, M., et al. (2018). Discovering translational biomarkers in neurodevelopmental disorders Nat Rev Drug Discov. England.
Schneider, A., et al. (2013). Electrocortical changes associated with minocycline treatment in fragile X syndrome. Journal of Psychopharmacology, 27, 956–963. https://doi.org/10.1177/0269881113494105
doi: 10.1177/0269881113494105 pubmed: 23981511
Schneider, T., & Przewlocki, R. (2005). Behavioral alterations in rats prenatally exposed to valproic acid: Animal model of autism. Neuropsychopharmacology, 30, 80–89. https://doi.org/10.1038/sj.npp.1300518
doi: 10.1038/sj.npp.1300518 pubmed: 15238991
Shigemori, T., Sakai, A., Takumi, T., Itoh, Y., & Suzuki, H. (2015). Altered Microglia in the Amygdala Are involved in anxiety-related behaviors of a copy number variation mouse model of Autism. Journal of Nippon Medical School, 82, 92–99. https://doi.org/10.1272/jnms.82.92
doi: 10.1272/jnms.82.92 pubmed: 25959200
Shultz, R. B., & Zhong, Y. (2017). Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regeneration Research, 12, 702–713. https://doi.org/10.4103/1673-5374.206633
doi: 10.4103/1673-5374.206633 pmcid: 5461601 pubmed: 28616020
Siller, S. S., & Broadie, K. (2012). Matrix metalloproteinases and minocycline: Therapeutic avenues for fragile X syndrome. Neural Plasticity, 2012, 124548. https://doi.org/10.1155/2012/124548
doi: 10.1155/2012/124548 pmcid: 3364018 pubmed: 22685676
Thapa, R., et al. (2021). Heart Rate variability in children with autism spectrum disorder and associations with medication and symptom severity. Autism Research, 14, 75–85. https://doi.org/10.1002/aur.2437
doi: 10.1002/aur.2437 pubmed: 33225622
Thom, R. P., et al. (2019). Beyond the brain: A multi-system inflammatory subtype of autism spectrum disorder. Psychopharmacology (berl), 236, 3045–3061. https://doi.org/10.1007/s00213-019-05280-6
doi: 10.1007/s00213-019-05280-6 pubmed: 31139876
Tikka, T., Fiebich, B. L., Goldsteins, G., Keinanen, R., & Koistinaho, J. (2001). Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. Journal of Neuroscience, 21, 2580–2588.
doi: 10.1523/JNEUROSCI.21-08-02580.2001 pubmed: 11306611
Toledo, M. A., Wen, T. H., Binder, D. K., Ethell, I. M., & Razak, K. A. (2019). Reversal of ultrasonic vocalization deficits in a mouse model of Fragile X Syndrome with minocycline treatment or genetic reduction of MMP-9. Behavioural Brain Research, 372, 112068. https://doi.org/10.1016/j.bbr.2019.112068
doi: 10.1016/j.bbr.2019.112068 pmcid: 6662633 pubmed: 31271818
Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W., & Pardo, C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology, 57, 67–81. https://doi.org/10.1002/ana.20315
doi: 10.1002/ana.20315 pubmed: 15546155
Wagner, G. C., Reuhl, K. R., Cheh, M., McRae, P., & Halladay, A. K. (2006). A new neurobehavioral model of autism in mice: Pre- and postnatal exposure to sodium valproate. Journal of Autism and Developmental Disorders, 36, 779–793. https://doi.org/10.1007/s10803-006-0117-y
doi: 10.1007/s10803-006-0117-y pubmed: 16609825
Yau, S. Y., et al. (2018). Chronic minocycline treatment improves hippocampal neuronal structure, NMDA receptor function, and memory processing in Fmr1 knockout mice. Neurobiology of Diseases, 113, 11–22. https://doi.org/10.1016/j.nbd.2018.01.014
doi: 10.1016/j.nbd.2018.01.014
Yau, S. Y., Chiu, C., Vetrici, M., & Christie, B. R. (2016). Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice. Behavioural Brain Research, 312, 77–83. https://doi.org/10.1016/j.bbr.2016.06.015
doi: 10.1016/j.bbr.2016.06.015 pubmed: 27291517
Yoo, M. H., Kim, T. Y., Yoon, Y. H., & Koh, J. Y. (2016). Autism phenotypes in ZnT3 null mice: Involvement of zinc dyshomeostasis, MMP-9 activation and BDNF upregulation. Science and Reports, 6, 28548. https://doi.org/10.1038/srep28548
doi: 10.1038/srep28548
Yu, T. W., & Berry-Kravis, E. (2014). Autism and fragile X syndrome. Seminars in Neurology, 34, 258–265. https://doi.org/10.1055/s-0034-1386764
doi: 10.1055/s-0034-1386764 pubmed: 25192504
Zimmerman, A. W., et al. (2005). Cerebrospinal fluid and serum markers of inflammation in . Pediatric Neurology, 33, 195–201. https://doi.org/10.1016/j.pediatrneurol.2005.03.014
doi: 10.1016/j.pediatrneurol.2005.03.014 pubmed: 16139734

Auteurs

Craig A Erickson (CA)

Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA. craig.erickson@cchmc.org.
Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA. craig.erickson@cchmc.org.

Rebecca C Shaffer (RC)

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Meredith Will (M)

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Lauren M Schmitt (LM)

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Paul Horn (P)

Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Kathy Hirst (K)

Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, Columbia, MO, USA.

Ernest V Pedapati (EV)

Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA.
Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

Nicole Ober (N)

Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA.

Rameshwari V Tumuluru (RV)

Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA.

Benjamin L Handen (BL)

Psychiatry, Pediatrics, Psychology, and Education Departments, University of Pittsburgh, Pittsburgh, USA.

David Q Beversdorf (DQ)

Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, Columbia, MO, USA.
Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri, Columbia, MO, USA.

Classifications MeSH