Advancing the analytical toolkit in the investigation of vector mosquito host biting site selection.

UPLC-MS collision cross-section prediction human surface skin compounds ion mobility non-invasive sampling wearable PDMS sampler

Journal

Journal of mass spectrometry : JMS
ISSN: 1096-9888
Titre abrégé: J Mass Spectrom
Pays: England
ID NLM: 9504818

Informations de publication

Date de publication:
Jan 2024
Historique:
revised: 13 11 2023
received: 27 09 2023
accepted: 20 11 2023
medline: 18 12 2023
pubmed: 18 12 2023
entrez: 18 12 2023
Statut: ppublish

Résumé

High-resolution mass spectrometry and ion mobility spectrometry provide additional confidence in biological marker discovery and elucidation by adding additional peak capacity through physiochemical separation orthogonal to chromatography. Sophisticated analytical techniques have proved valuable in the identification of human skin surface chemicals used by vector mosquitoes to find their human host. Polydimethylsiloxane (PDMS) was used as a non-invasive passive wearable sampler to concentrate skin surface non-volatile and semi-volatile compounds prior to solvent desorption directly in an LC vial, thereby simplifying the link between extraction and analysis. Ultra-performance liquid chromatography with ion mobility spectrometry coupled with high-resolution mass spectrometry (UPLC-IMS-HRMS) was used for compound separation and detection. A comparison of the skin chemical profiles between the ankle and wrist skin surface region sampled over a 5-day period for a human volunteer was done. Twenty-three biomarkers were tentatively identified with the aid of a collision cross-section (CCS) prediction tool, seven associated with the ankle skin surface region and 16 closely associated with the wrist skin surface. Ten amino acids were detected and unequivocally identified on the human skin surface for the first time. Furthermore, 22 previously unreported skin surface compounds were tentatively identified on the human skin surface using accurate mass, CCS values and fragmentation patterns. Method limits of detection for the passive skin sampling method ranged from 8.7 (sulfadimethoxine) to 95 ng (taurine). This approach enabled the detection and identification of as-yet unknown human skin surface compounds and provided corresponding CCS values.

Identifiants

pubmed: 38108549
doi: 10.1002/jms.4992
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e4992

Subventions

Organisme : Dr Hubert Mandery
Organisme : L'Oréal-UNESCO For Women in Science sub-Saharan African Programme

Informations de copyright

© 2023 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons Ltd.

Références

Takken W, Knols BG. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol. 1999;44(1):131-157. doi:10.1146/annurev.ento.44.1.131
Van Loon JJ, Smallegange RC, Bukovinszkiné-Kiss G, et al. Mosquito attraction: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles. J Chem Ecol. 2015;41(6):567-573. doi:10.1007/s10886-015-0587-5
Smallegange RC, Bukovinszkiné-Kiss G, Otieno B, et al. Identification of candidate volatiles that affect the behavioural response of the malaria mosquito Anopheles gambiae sensu stricto to an active kairomone blend: laboratory and semi-field assays. Physiol Entomol. 2012;37(1):60-71. doi:10.1111/j.1365-3032.2011.00827.x
Smallegange RC, Qiu YT, van Loon JA, Takken W. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae). Chem Senses. 2005;30(2):145-152. doi:10.1093/chemse/bji010
Wooding M, Naudé Y, Rohwer E, Bouwer M. Controlling mosquitoes with semiochemicals: a review. Parasit Vectors. 2020;13(1):80. doi:10.1186/s13071-020-3960-3
Omolo MO, Njiru B, Ndiege IO, Musau RM, Hassanali A. Differential attractiveness of human foot odours to Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) and variation in their chemical composition. Acta Trop. 2013;128(1):144-148. doi:10.1016/j.actatropica.2013.07.012
Wooding M, Rohwer ER, Naudé Y. Chemical profiling of the human skin surface for malaria vector control via a non-invasive sorptive sampler with GC× GC-TOFMS. Anal Bioanal Chem. 2020;1-19(23):5759-5777. doi:10.1007/s00216-020-02799-y
Takken W, Verhulst NO. Host preferences of blood-feeding mosquitoes. Annu Rev Entomol. 2013;58(1):433-453. doi:10.1146/annurev-ento-120811-153618
Dekker T, Takken W, Knols BG, et al. Selection of biting sites on a human host by Anopheles gambiae ss. An arabiensis and an quadriannulatus. Entomol Exp Appl. 1998;87(3):295-300. doi:10.1046/j.1570-7458.1998.00334.x
Busula AO, Takken W, Loy DE, Hahn BH, Mukabana WR, Verhulst NO. Mosquito host preferences affect their response to synthetic and natural odour blends. Malar J. 2015;14(1):1. doi:10.1186/s12936-015-0635-1
Takken W. The role of olfaction in host-seeking of mosquitoes: a review. Int J Trop Insect Sci. 1991;12(1-2-3):287-295. doi:10.1017/S1742758400020816
Coutinho-Abreu IV, Jamshidi O, Raban R, et al. Identification of human skin microbiome odorants that manipulate mosquito landing behavior. bioRxiv. 2023;553996. doi:10.1101/2023.08.19.553996
Giraldo D, Rankin-Turner S, Corver A, et al. Human scent guides mosquito thermotaxis and host selection under naturalistic conditions. Curr Biol. 2023;33:2367-2382.e7. doi:10.1016/j.cub.2023.04.050
De Lacy Costello B, Amann A, Al-Kateb H, et al. A review of the volatiles from the healthy human body. J Breath Res. 2014;8(1):014001. doi:10.1088/1752-7155/8/1/014001
Dormont L, Bessière J-M, Cohuet A. Human skin volatiles: a review. J Chem Ecol. 2013;39(5):569-578. doi:10.1007/s10886-013-0286-z
Roodt AP, Naudé Y, Stoltz A, Rohwer E. Human skin volatiles: passive sampling and GC× GC-ToFMS analysis as a tool to investigate the skin microbiome and interactions with anthropophilic mosquito disease vectors. J Chromatogr B. 2018;1097:83-93. doi:10.1016/j.jchromb.2018.09.002
Verhulst NO, Weldegergis BT, Menger D, Takken W. Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds. Sci Rep. 2016;6(1):27141. doi:10.1038/srep27141
Bernier UR, Kline DL, Schreck CE, Yost RA, Barnard DR. Chemical analysis of human skin emanations: comparison of volatiles from humans that differ in attraction of Aedes aegypti (Diptera: Culicidae). J Am Mosq Control Assoc. 2002;8:186-195.
Robinson A, Busula AO, Voets MA, et al. Plasmodium-associated changes in human odor attract mosquitoes. Proc Natl Acad Sci. 2018;115(18):E4209-E4218. doi:10.1073/pnas.1721610115
Mochalski P, Wiesenhofer H, Allers M, et al. Monitoring of selected skin-and breath-borne volatile organic compounds emitted from the human body using gas chromatography ion mobility spectrometry (GC-IMS). J Chromatogr B. 2018;1076:29-34. doi:10.1016/j.jchromb.2018.01.013
Calderón-Santiago M, Priego-Capote F, Jurado-Gámez B, de Castro ML. Optimization study for metabolomics analysis of human sweat by liquid chromatography-tandem mass spectrometry in high resolution mode. J Chromatogr A. 2014;1333:70-78. doi:10.1016/j.chroma.2014.01.071
Delgado-Povedano M, Calderón-Santiago M, Priego-Capote F, de Castro ML. Study of sample preparation for quantitative analysis of amino acids in human sweat by liquid chromatography-tandem mass spectrometry. Talanta. 2016;146:310-317. doi:10.1016/j.talanta.2015.07.066
Causon TJ, Ivanova-Petropulos V, Petrusheva D, Bogeva E, Hann S. Fingerprinting of traditionally produced red wines using liquid chromatography combined with drift tube ion mobility-mass spectrometry. Anal Chim Acta. 2019;1052:179-189. doi:10.1016/j.aca.2018.11.040
De Villiers A, Venter P, Pasch H. Recent advances and trends in the liquid-chromatography-mass spectrometry analysis of flavonoids. J Chromatogr A. 2016;1430:16-78. doi:10.1016/j.chroma.2015.11.077
Clements AN. The biology of mosquitoes: sensory reception and behaviour. Cambridge University Press; 1999. doi:10.1079/9780851993133.0000
Braack L, Hunt R, Koekemoer LL, et al. Biting behaviour of African malaria vectors: 1. Where do the main vector species bite on the human body? Parasit Vectors. 2015;8(1):76. doi:10.1186/s13071-015-0677-9
Wooding M, Dodgen T, Rohwer ER, Naudé Y. Mass spectral studies on the human skin surface for mosquito vector control applications. J Mass Spectrom. 2021;56(2):e4686. doi:10.1002/jms.4686
Naudé Y, Gorst-Allman P, Rohwer E. A cheap and simple passive sampler using silicone rubber for the analysis of surface water by gas chromatography-time of flight mass spectrometry. Water SA: WISA 2014-Water Innovations Special Edition. 2015;41:182-188.
Triñanes S, Pena MT, Casais MC, Mejuto MC. Development of a new sorptive extraction method based on simultaneous direct and headspace sampling modes for the screening of polycyclic aromatic hydrocarbons in water samples. Talanta. 2015;132:433-442. doi:10.1016/j.talanta.2014.09.044
Ochiai N, Sasamoto K, David F, Sandra P. Solvent-assisted stir bar sorptive extraction by using swollen polydimethylsiloxane for enhanced recovery of polar solutes in aqueous samples: application to aroma compounds in beer and pesticides in wine. J Chromatogr A. 2016;1455:45-56. doi:10.1016/j.chroma.2016.05.085
Serodio P, Nogueira J. Development of a stir-bar-sorptive extraction-liquid desorption-large-volume injection capillary gas chromatographic-mass spectrometric method for pyrethroid pesticides in water samples. Anal Bioanal Chem. 2005;382(4):1141-1151. doi:10.1007/s00216-005-3210-8
Margoum C, Guillemain C, Yang X, Coquery M. Stir bar sorptive extraction coupled to liquid chromatography-tandem mass spectrometry for the determination of pesticides in water samples: method validation and measurement uncertainty. Talanta. 2013;116:1-7. doi:10.1016/j.talanta.2013.04.066
Szelényi Z, Komoly S. Thermoregulation: from basic neuroscience to clinical neurology, part 2. Vol. 6, 1. Taylor & Francis; 2019:7-10. doi:10.1080/23328940.2018.1541680
Zhou Z, Shen X, Tu J, Zhu Z-J. Large-scale prediction of collision cross-section values for metabolites in ion mobility-mass spectrometry. Anal Chem. 2016;88(22):11084-11091. doi:10.1021/acs.analchem.6b03091
Bouwmeester R, Martens L, Degroeve S, Richardson K, Vissers JPC. Predicting ion mobility collision cross sections by combining conventional and data driven modelling. ASMS Proc. 2019;MP 366.
Separation Science HPLC Solutions. Do I get Two Peaks for Ionic Compounds? 2020. Accessed March 18, 2020. https://blog.sepscience.com/liquidchromatography/do-i-get-two-peaks-for-ionic-compounds
Wooding M, Rohwer ER, Naudé Y. Non-invasive sorptive extraction for the separation of human skin surface chemicals using comprehensive gas chromatography coupled to time-of-flight mass spectrometry: a mosquito-host biting site investigation. J Sep Sci. 2020;43(22):4202-4215. doi:10.1002/jssc.202000522
Wishart DS, Feunang YD, Marcu A, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46(D1):D608-D617. doi:10.1093/nar/gkx1089
Xu P, Choo Y-M, De La Rosa A, Leal WS. Mosquito odorant receptor for DEET and methyl jasmonate. Proc Natl Acad Sci. 2014;111(46):16592-16597. doi:10.1073/pnas.1417244111

Auteurs

Madelien Wooding (M)

Department of Chemistry, University of Pretoria, Pretoria, South Africa.

Tyren Dodgen (T)

Waters Corporation, Rydalmere, New South Wales, Australia.

Egmont R Rohwer (ER)

Department of Chemistry, University of Pretoria, Pretoria, South Africa.

Yvette Naudé (Y)

Department of Chemistry, University of Pretoria, Pretoria, South Africa.

Classifications MeSH