Validation of Oxford nanopore sequencing for improved New World Leishmania species identification via analysis of 70-kDA heat shock protein.

Cutaneous Leishmaniasis HSP70-Long HSP70-Short Leishmania MinION sequencing

Journal

Parasites & vectors
ISSN: 1756-3305
Titre abrégé: Parasit Vectors
Pays: England
ID NLM: 101462774

Informations de publication

Date de publication:
18 Dec 2023
Historique:
received: 25 09 2023
accepted: 29 11 2023
medline: 19 12 2023
pubmed: 19 12 2023
entrez: 19 12 2023
Statut: epublish

Résumé

Leishmaniasis is a parasitic disease caused by obligate intracellular protozoa of the genus Leishmania. This infection is characterized by a wide range of clinical manifestations, with symptoms greatly dependent on the causal parasitic species. Here we present the design and application of a new 70-kDa heat shock protein gene (hsp70)-based marker of 771 bp (HSP70-Long). We evaluated its sensitivity, specificity and diagnostic performance employing an amplicon-based MinION™ DNA sequencing assay to identify different Leishmania species in clinical samples from humans and reservoirs with cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL). We also conducted a comparative analysis between our novel marker and a previously published HSP70 marker known as HSP70-Short, which spans 330 bp. A dataset of 27 samples from Colombia, Venezuela and the USA was assembled, of which 26 samples were collected from humans, dogs and cats affected by CL and one sample was collected from a dog with VL in the USA (but originally from Greece). DNA was extracted from each sample and underwent conventional PCR amplification utilizing two distinct HSP70 markers: HSP70-Short and HSP70-Long. The subsequent products were then sequenced using the MinION™ sequencing platform. The results highlight the distinct characteristics of the newly devised HSP70-Long primer, showcasing the notable specificity of this primer, although its sensitivity is lower than that of the HSP70-Short marker. Notably, both markers demonstrated strong discriminatory capabilities, not only in distinguishing between different species within the Leishmania genus but also in identifying instances of coinfection. This study underscores the outstanding specificity and effectiveness of HSP70-based MinION™ sequencing, in successfully discriminating between diverse Leishmania species and identifying coinfection events within samples sourced from leishmaniasis cases.

Sections du résumé

BACKGROUND BACKGROUND
Leishmaniasis is a parasitic disease caused by obligate intracellular protozoa of the genus Leishmania. This infection is characterized by a wide range of clinical manifestations, with symptoms greatly dependent on the causal parasitic species. Here we present the design and application of a new 70-kDa heat shock protein gene (hsp70)-based marker of 771 bp (HSP70-Long). We evaluated its sensitivity, specificity and diagnostic performance employing an amplicon-based MinION™ DNA sequencing assay to identify different Leishmania species in clinical samples from humans and reservoirs with cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL). We also conducted a comparative analysis between our novel marker and a previously published HSP70 marker known as HSP70-Short, which spans 330 bp.
METHODS METHODS
A dataset of 27 samples from Colombia, Venezuela and the USA was assembled, of which 26 samples were collected from humans, dogs and cats affected by CL and one sample was collected from a dog with VL in the USA (but originally from Greece). DNA was extracted from each sample and underwent conventional PCR amplification utilizing two distinct HSP70 markers: HSP70-Short and HSP70-Long. The subsequent products were then sequenced using the MinION™ sequencing platform.
RESULTS RESULTS
The results highlight the distinct characteristics of the newly devised HSP70-Long primer, showcasing the notable specificity of this primer, although its sensitivity is lower than that of the HSP70-Short marker. Notably, both markers demonstrated strong discriminatory capabilities, not only in distinguishing between different species within the Leishmania genus but also in identifying instances of coinfection.
CONCLUSIONS CONCLUSIONS
This study underscores the outstanding specificity and effectiveness of HSP70-based MinION™ sequencing, in successfully discriminating between diverse Leishmania species and identifying coinfection events within samples sourced from leishmaniasis cases.

Identifiants

pubmed: 38111024
doi: 10.1186/s13071-023-06073-9
pii: 10.1186/s13071-023-06073-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

458

Informations de copyright

© 2023. The Author(s).

Références

Akhoundi M, Downing T, Votypka J, Kuhls K, Lukes J, Cannet A, et al. Leishmania infections: molecular targets and diagnosis. Mol Aspects Med. 2017;57:1–29.
pubmed: 28159546 doi: 10.1016/j.mam.2016.11.012
Akhoundi M, Kuhls K, Cannet A, Votypka J, Marty P, Delaunay P, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis. 2016;10:e0004349.
pubmed: 26937644 pmcid: 4777430 doi: 10.1371/journal.pntd.0004349
Fayaz S, Fard-Esfahani P, Bahrami F, Parvizi P, Ajdary S. High resolution melting assay in discrimination of the main etiologic agents of leishmaniasis in Iran. Iran J Microbiol. 2021;13:137–44.
pubmed: 33889373 pmcid: 8043822
Nicolas L, Prina E, Lang T, Milon G. Real-time PCR for detection and quantitation of Leishmania in mouse tissues. J Clin Microbiol. 2002;40:1666–9.
pubmed: 11980939 pmcid: 130941 doi: 10.1128/JCM.40.5.1666-1669.2002
Galluzzi L, Ceccarelli M, Diotallevi A, Menotta M, Magnani M. Real-time PCR applications for diagnosis of leishmaniasis. Parasit Vectors. 2018;11:273.
pubmed: 29716641 pmcid: 5930967 doi: 10.1186/s13071-018-2859-8
Kuhls K, Mauricio IL, Pratlong F, Presber W, Schonian G. Analysis of ribosomal DNA internal transcribed spacer sequences of the Leishmania donovani complex. Microbes Infect. 2005;7:1224–34.
pubmed: 16002315 doi: 10.1016/j.micinf.2005.04.009
Reithinger R, Dujardin JC. Molecular diagnosis of leishmaniasis: current status and future applications. J Clin Microbiol. 2007;45:21–5.
pubmed: 17093038 doi: 10.1128/JCM.02029-06
Lau R, Mukkala AN, Kariyawasam R, Clarke S, Valencia BM, Llanos-Cuentas A, et al. Comparison of whole genome sequencing versus standard molecular diagnostics for species identification in the Leishmania viannia subgenus. Am J Trop Med Hyg. 2021;105:660–9.
pubmed: 34270450 pmcid: 8592345 doi: 10.4269/ajtmh.21-0273
Boite MC, Mauricio IL, Miles MA, Cupolillo E. New insights on taxonomy, phylogeny and population genetics of Leishmania (Viannia) parasites based on multilocus sequence analysis. PLoS Negl Trop Dis. 2012;6:e1888.
pubmed: 23133690 pmcid: 3486886 doi: 10.1371/journal.pntd.0001888
Marfurt J, Nasereddin A, Niederwieser I, Jaffe CL, Beck HP, Felger I. Identification and differentiation of Leishmania species in clinical samples by PCR amplification of the miniexon sequence and subsequent restriction fragment length polymorphism analysis. J Clin Microbiol. 2003;41:3147–53.
pubmed: 12843055 pmcid: 165364 doi: 10.1128/JCM.41.7.3147-3153.2003
Schonian G, Schnur L, el Fari M, Oskam L, Kolesnikov AA, Sokolowska-Kohler W, et al. Genetic heterogeneity in the species Leishmania tropica revealed by different PCR-based methods. Trans R Soc Trop Med Hyg. 2001;95:217–24.
pubmed: 11355565 doi: 10.1016/S0035-9203(01)90173-7
Montalvo AM, Monzote L, Fraga J, Montano I, Muskus C, Marin M, et al. PCR-RFLP and RAPD for typing neotropical Leishmania. Biomedica. 2008;28:597–606.
pubmed: 19462565 doi: 10.7705/biomedica.v28i4.66
Talmi-Frank D, Nasereddin A, Schnur LF, Schonian G, Toz SO, Jaffe CL, et al. Detection and identification of old world Leishmania by high resolution melt analysis. PLoS Negl Trop Dis. 2010;4:e581.
pubmed: 20069036 pmcid: 2797090 doi: 10.1371/journal.pntd.0000581
Sriworarat C, Phumee A, Mungthin M, Leelayoova S, Siriyasatien P. Development of loop-mediated isothermal amplification (LAMP) for simple detection of Leishmania infection. Parasit Vectors. 2015;8:591.
pubmed: 26577333 pmcid: 4650110 doi: 10.1186/s13071-015-1202-x
Maia de Souza R, Ruedas Martins RC, Moyses Franco LA, Tuon FF, de Oliveira IG Junior, Maia da Silva CA, et al. Identification of Leishmania species by next generation sequencing of hsp70 gene. Mol Cell Probes. 2022;61:101791.
Patino LH, Castillo-Castaneda AC, Munoz M, Jaimes JE, Luna-Nino N, Hernandez C, et al. Development of an amplicon-based next-generation sequencing protocol to identify Leishmania species and other trypanosomatids in leishmaniasis endemic areas. Microbiol Spectr. 2021;9:e0065221.
pubmed: 34643453 doi: 10.1128/Spectrum.00652-21
Castillo-Castaneda A, Patino LH, Munoz M, Ayala MS, Segura M, Bautista J, et al. Amplicon-based next-generation sequencing reveals the co-existence of multiple Leishmania species in patients with visceral leishmaniasis. Int J Infect Dis. 2022;115:35–8.
pubmed: 34863923 doi: 10.1016/j.ijid.2021.11.029
Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12:733–5.
pubmed: 26076426 doi: 10.1038/nmeth.3444
Michael TP, Jupe F, Bemm F, Motley ST, Sandoval JP, Lanz C, et al. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat Commun. 2018;9:541.
pubmed: 29416032 pmcid: 5803254 doi: 10.1038/s41467-018-03016-2
Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres V, et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med. 2015;7:99.
pubmed: 26416663 pmcid: 4587849 doi: 10.1186/s13073-015-0220-9
Taylor MK, Williams EP, Wongsurawat T, Jenjaroenpun P, Nookaew I, Jonsson CB. Amplicon-based, next-generation sequencing approaches to characterize single nucleotide polymorphisms of Orthohantavirus species. Front Cell Infect Microbiol. 2020;10:565591.
pubmed: 33163416 pmcid: 7591466 doi: 10.3389/fcimb.2020.565591
Quick J, Ashton P, Calus S, Chatt C, Gossain S, Hawker J, et al. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol. 2015;16:114.
pubmed: 26025440 pmcid: 4702336 doi: 10.1186/s13059-015-0677-2
Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol. 2015;33:296–300.
pubmed: 25485618 doi: 10.1038/nbt.3103
Marti-Carreras J, Carrasco M, Gomez-Ponce M, Noguera-Julian M, Fisa R, Riera C, et al. Identification of Leishmania infantum epidemiology, drug resistance and pathogenicity biomarkers with nanopore sequencing. Microorganisms. 2022;10:34.
doi: 10.3390/microorganisms10112256
Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science. 2002;295:1852–8.
pubmed: 11884745 doi: 10.1126/science.1068408
Van der Auwera G, Ravel C, Verweij JJ, Bart A, Schonian G, Felger I. Evaluation of four single-locus markers for Leishmania species discrimination by sequencing. J Clin Microbiol. 2014;52:1098–104.
pubmed: 24452158 pmcid: 3993476 doi: 10.1128/JCM.02936-13
Fraga J, Montalvo AM, De Doncker S, Dujardin JC, Van der Auwera G. Phylogeny of Leishmania species based on the heat-shock protein 70 gene. Infect Genet Evol. 2010;10:238–45.
pubmed: 19913110 doi: 10.1016/j.meegid.2009.11.007
Espinosa OA, Serrano MG, Camargo EP, Teixeira MMG, Shaw JJ. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology. 2018;145:430–42.
pubmed: 27976601 doi: 10.1017/S0031182016002092
Yuan D, Qin H, Zhang J, Liao L, Chen Q, Chen D, et al. Phylogenetic analysis of HSP70 and cyt b gene sequences for Chinese Leishmania isolates and ultrastructural characteristics of Chinese Leishmania sp. Parasitol Res. 2017;116:693–702.
pubmed: 27942942 doi: 10.1007/s00436-016-5335-4
Van der Auwera G, Dujardin JC. Species typing in dermal leishmaniasis. Clin Microbiol Rev. 2015;28:265–94.
pubmed: 25672782 pmcid: 4402951 doi: 10.1128/CMR.00104-14
Ovalle-Bracho C, Londono-Barbosa D, Salgado-Almario J, Gonzalez C. Evaluating the spatial distribution of Leishmania parasites in Colombia from clinical samples and human isolates (1999 to 2016). PLoS ONE. 2019;14:e0214124.
pubmed: 30917177 pmcid: 6436702 doi: 10.1371/journal.pone.0214124
Sandoval-Ramirez CM, Hernandez C, Teheran AA, Gutierrez-Marin R, Martinez-Vega RA, Morales D, et al. Complex ecological interactions across a focus of cutaneous leishmaniasis in Eastern Colombia: novel description of Leishmania species, hosts and phlebotomine fauna. R Soc Open Sci. 2020;7:200266.
pubmed: 32874625 pmcid: 7428272 doi: 10.1098/rsos.200266
Herrera G, Teheran A, Pradilla I, Vera M, Ramirez JD. Geospatial-temporal distribution of tegumentary Leishmaniasis in Colombia (2007–2016). PLoS Negl Trop Dis. 2018;12:e0006419.
pubmed: 29624582 pmcid: 5906026 doi: 10.1371/journal.pntd.0006419
Veland N, Valencia BM, Alba M, Adaui V, Llanos-Cuentas A, Arevalo J, et al. Simultaneous infection with Leishmania (Viannia) braziliensis and L. (V.) lainsoni in a Peruvian patient with cutaneous leishmaniasis. Am J Trop Med Hyg. 2013;88:774–7.
pubmed: 23382155 pmcid: 3617868 doi: 10.4269/ajtmh.12-0594
Hernandez C, Alvarez C, Gonzalez C, Ayala MS, Leon CM, Ramirez JD. Identification of six New World Leishmania species through the implementation of a high-resolution melting (HRM) genotyping assay. Parasit Vectors. 2014;7:501.
pubmed: 25394418 pmcid: 4239372 doi: 10.1186/s13071-014-0501-y
Okonechnikov K, Golosova O, Fursov M. team U: Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–7.
pubmed: 22368248 doi: 10.1093/bioinformatics/bts091
Patino LH, Muskus C, Munoz M, Ramirez JD. Genomic analyses reveal moderate levels of ploidy, high heterozygosity and structural variations in a Colombian isolate of Leishmania (Leishmania) amazonensis. Acta Trop. 2019;203:105296.
pubmed: 31836281 doi: 10.1016/j.actatropica.2019.105296
Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50.
pubmed: 19377059 pmcid: 2693737 doi: 10.1093/molbev/msp077
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.
pubmed: 30931475 pmcid: 6602468 doi: 10.1093/nar/gkz239
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.
pubmed: 16221896 doi: 10.1093/molbev/msj030
Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016;44:W147-153.
pubmed: 27190236 pmcid: 4987948 doi: 10.1093/nar/gkw419
Paniz-Mondolfi A, Guerra S, Munoz M, Luna N, Hernandez MM, Patino LH, et al. Evaluation and validation of an RT-PCR assay for specific detection of monkeypox virus (MPXV). J Med Virol. 2023;95:e28247.
pubmed: 36271493 doi: 10.1002/jmv.28247
Correa-Cardenas CA, Perez J, Patino LH, Ramirez JD, Duque MC, Romero Y, et al. Distribution, treatment outcome and genetic diversity of Leishmania species in military personnel from Colombia with cutaneous leishmaniasis. BMC Infect Dis. 2020;20:938.
pubmed: 33297972 pmcid: 7724885 doi: 10.1186/s12879-020-05529-y
Montalvo AM, Fraga J, Montano I, Monzote L, Van der Auwera G, Marin M, et al. Molecular identification of Leishmania spp clinical isolates from Colombia based on hsp70 gene. Biomedica. 2016;36:37–44.
pubmed: 27622623
Hoyos J, Rosales-Chilama M, Leon C, Gonzalez C, Gomez MA. Sequencing of hsp70 for discernment of species from the Leishmania (Viannia) guyanensis complex from endemic areas in Colombia. Parasit Vectors. 2022;15:406.
pubmed: 36329517 pmcid: 9635106 doi: 10.1186/s13071-022-05438-w
Espada CR, Ortiz PA, Shaw JJ, Barral AMP, Costa JML, Uliana SRB, et al. Identification of Leishmania (Viannia) species and clinical isolates of Leishmania (Leishmania) amazonensis from Brazil using PCR-RFLP of the heat-shock protein 70 gene reveals some unexpected observations. Diagn Microbiol Infect Dis. 2018;91:312–8.
pubmed: 29653798 doi: 10.1016/j.diagmicrobio.2018.03.004
Miranda ADC, Gonzalez KA, Samudio F, Pineda VJ, Calzada JE, Capitan-Barrios Z, et al. Molecular identification of parasites causing cutaneous leishmaniasis in Panama. Am J Trop Med Hyg. 2021;104:1326–34.
pubmed: 33432903 pmcid: 8045627 doi: 10.4269/ajtmh.20-1336
Maloney JG, Molokin A, Santin M. Next generation amplicon sequencing improves detection of Blastocystis mixed subtype infections. Infect Genet Evol. 2019;73:119–25.
pubmed: 31026606 doi: 10.1016/j.meegid.2019.04.013
Montalvo AM, Fraga J, Tirado D, Blandon G, Alba A, Van der Auwera G, et al. Detection and identification of Leishmania spp.: application of two hsp70-based PCR-RFLP protocols to clinical samples from the New World. Parasitol Res. 2017;116:1843–8.
pubmed: 28573463 doi: 10.1007/s00436-017-5454-6
Montalvo AM, Fraga J, Maes I, Dujardin JC, Van der Auwera G. Three new sensitive and specific heat-shock protein 70 PCRs for global Leishmania species identification. Eur J Clin Microbiol Infect Dis. 2012;31:1453–61.
pubmed: 22083340 doi: 10.1007/s10096-011-1463-z
Leon CM, Munoz M, Hernandez C, Ayala MS, Florez C, Teheran A, et al. Analytical performance of four polymerase chain reaction (PCR) and real time PCR (qPCR) assays for the detection of six Leishmania species DNA in Colombia. Front Microbiol. 2017;8:1907.
pubmed: 29046670 pmcid: 5632848 doi: 10.3389/fmicb.2017.01907
Filgueira CPB, Moreira OC, Cantanhede LM, de Farias HMT, Porrozzi R, Britto C, et al. Comparison and clinical validation of qPCR assays targeting Leishmania 18S rDNA and HSP70 genes in patients with American tegumentary leishmaniasis. PLoS Negl Trop Dis. 2020;14:e0008750.
pubmed: 33044986 pmcid: 7581006 doi: 10.1371/journal.pntd.0008750
Folgueira C, Canavate C, Chicharro C, Requena JM. Genomic organization and expression of the HSP70 locus in New and Old World Leishmania species. Parasitology. 2007;134:369–77.
pubmed: 17054823 doi: 10.1017/S0031182006001570
Ramirez CA, Requena JM, Puerta CJ. Identification of the HSP70-II gene in Leishmania braziliensis HSP70 locus: genomic organization and UTRs characterization. Parasit Vectors. 2011;4:166.
pubmed: 21871099 pmcid: 3185273 doi: 10.1186/1756-3305-4-166
Trueb I, Portela RD, Franke CR, Carneiro IO, Ribeiro GJ Jr, Soares RP, et al. Trypanosoma cruzi and Leishmania sp. infection in wildlife from urban rainforest fragments in Northeast Brazil. J Wildl Dis. 2018;54:76–84.
pubmed: 28977769 doi: 10.7589/2017-01-017
Orduna-Mayares D, Hernandez-Camacho N, Escobedo-Ortegon FJ, Canche-Pool EB, Sosa-Gallegos SL, SalvadorZamora L, et al. Trypanosoma cruzi and Leishmania spp in rodents in a peri-urban area of Central Mexico. Vet Parasitol Reg Stud Rep. 2022;35:100779.
Bastrenta B, Mita N, Buitrago R, Vargas F, Flores M, Machane M, et al. Human mixed infections of Leishmania spp. and Leishmania-Trypanosoma cruzi. in a sub Andean Bolivian area: identification by polymerase chain reaction/hybridization and isoenzyme. Mem Inst Oswaldo Cruz. 2003;98:255–64.
pubmed: 12764443 doi: 10.1590/S0074-02762003000200015
Mendes DG, Lauria-Pires L, Nitz N, Lozzi SP, Nascimento RJ, Monteiro PS, et al. Exposure to mixed asymptomatic infections with Trypanosoma cruzi, Leishmania braziliensis and Leishmania chagasi in the human population of the greater Amazon. Trop Med Int Health. 2007;12:629–36.
pubmed: 17445130 doi: 10.1111/j.1365-3156.2007.01831.x
Castillo-Castaneda AC, Patino LH, Zuniga MF, Cantillo-Barraza O, Ayala MS, Segura M, et al. An overview of the trypanosomatid (Kinetoplastida: Trypanosomatidae) parasites infecting several mammal species in Colombia. Parasit Vectors. 2022;15:471.
pubmed: 36522757 pmcid: 9756507 doi: 10.1186/s13071-022-05595-y
Patino LH, Mendez C, Rodriguez O, Romero Y, Velandia D, Alvarado M, et al. Spatial distribution, Leishmania species and clinical traits of cutaneous leishmaniasis cases in the Colombian army. PLoS Negl Trop Dis. 2017;11:e0005876.
pubmed: 28850603 pmcid: 5593196 doi: 10.1371/journal.pntd.0005876
Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. 2012;7:e35671.
pubmed: 22693548 pmcid: 3365071 doi: 10.1371/journal.pone.0035671
Delgado-Noguera LA, Hernandez-Pereira CE, Castillo-Castaneda AC, Patino LH, Castaneda S, Herrera G, et al. Diversity and geographical distribution of Leishmania species and the emergence of Leishmania (Leishmania) infantum and L. (Viannia) panamensis in Central-Western Venezuela. Acta Trop. 2023;242:106901.
pubmed: 36940857 doi: 10.1016/j.actatropica.2023.106901
Gonzalez C, Leon C, Paz A, Lopez M, Molina G, Toro D, et al. Diversity patterns, Leishmania DNA detection, and bloodmeal identification of Phlebotominae sand flies in villages in northern Colombia. PLoS ONE. 2018;13:e0190686.
pubmed: 29320544 pmcid: 5761875 doi: 10.1371/journal.pone.0190686
Ardila MM, Carrillo-Bonilla L, Pabon A, Robledo SM. Surveillance of phlebotomine fauna and Didelphis marsupialis (Didelphimorphia: Didelphidae) infection in an area highly endemic for visceral leishmaniasis in Colombia. Biomedica. 2019;39:252–64.
pubmed: 31529813 doi: 10.7705/biomedica.v39i2.3905
Rugani JN, Quaresma PF, Gontijo CF, Soares RP, Monte-Neto RL. Intraspecies susceptibility of Leishmania (Viannia) braziliensis to antileishmanial drugs: Antimony resistance in human isolates from atypical lesions. Biomed Pharmacother. 2018;108:1170–80.
pubmed: 30372818 doi: 10.1016/j.biopha.2018.09.149
de Oliveira GM, Madeira Mde F, Oliveira FS, Pires MQ, Pacheco Rda S. Canine cutaneous leishmaniasis: Dissemination and tissue tropism of genetically distinct Leishmania (Viannia) braziliensis populations. Vet Med Int. 2013;2013:982183.
pubmed: 23844317 pmcid: 3694552 doi: 10.1155/2013/982183
Velez ID, Carrillo LM, Lopez L, Rodriguez E, Robledo SM. An epidemic outbreak of canine cutaneous leishmaniasis in Colombia caused by Leishmania braziliensis and Leishmania panamensis. Am J Trop Med Hyg. 2012;86:807–11.
pubmed: 22556078 pmcid: 3335684 doi: 10.4269/ajtmh.2012.11-0408
Silva TF, Tomiotto-Pellissier F, Pasquali AKS, Pinto-Ferreira F, Pavanelli WR, Conchon-Costa I, et al. Phenotypical and genotypical differences among Leishmania (Leishmania) amazonensis isolates that caused different clinical frames in humans and dogs: A systematic review. Acta Trop. 2021;221:106018.
pubmed: 34157292 doi: 10.1016/j.actatropica.2021.106018
Cardoso T, Bezerra C, Medina LS, Ramasawmy R, Scheriefer A, Bacellar O, et al. Leishmania braziliensis isolated from disseminated leishmaniasis patients downmodulate neutrophil function. Parasite Immunol. 2019;41:e12620.
pubmed: 30815888 pmcid: 6519172 doi: 10.1111/pim.12620
Rugani JN, Gontijo CMF, Frezard F, Soares RP, Monte-Neto RLD. Antimony resistance in Leishmania (Viannia) braziliensis clinical isolates from atypical lesions associates with increased ARM56/ARM58 transcripts and reduced drug uptake. Mem Inst Oswaldo Cruz. 2019;114:e190111.
pubmed: 31433006 pmcid: 6697410 doi: 10.1590/0074-02760190111
Trainor KE, Porter BF, Logan KS, Hoffman RJ, Snowden KF. Eight cases of feline cutaneous leishmaniasis in Texas. Vet Pathol. 2010;47:1076–81.
pubmed: 20826847 doi: 10.1177/0300985810382094
Hopke K, Meyers A, Auckland L, Hamer S, Florin D, Diesel A, et al. Leishmania mexicana in a central Texas cat: clinical presentation, molecular identification, sandfly vector collection and novel management. JFMS Open Rep. 2021;7:2055116921999595.
pubmed: 33815814 pmcid: 7995465
Rivas AK, Alcover M, Martinez-Orellana P, Montserrat-Sangra S, Nachum-Biala Y, Bardagi M, et al. Clinical and diagnostic aspects of feline cutaneous leishmaniosis in Venezuela. Parasit Vectors. 2018;11:141.
pubmed: 29554979 pmcid: 5859506 doi: 10.1186/s13071-018-2747-2
Mendoza Yeimar CA, Hernández-Pereira Carlos E, Shaban Maryia V. Cutaneous leishmaniosis due to Leishmania mexicana in a cat treated with cryotherapy. Vet Dermatol. 2021;33:450–3.
doi: 10.1111/vde.13083
Paniz Mondolfi AE, Colmenares Garmendia A, Mendoza Perez Y, Hernandez-Pereira CE, Medina C, Vargas F, et al. Autochthonous cutaneous leishmaniasis in urban domestic animals (Felis catus/Canis lupus familiaris) from central-western Venezuela. Acta Trop. 2019;191:252–60.
pubmed: 30633896 doi: 10.1016/j.actatropica.2019.01.006
Dalvi APR, Carvalho TDG, Werneck GL. Is there an association between exposure to cats and occurrence of visceral leishmaniasis in humans and dogs? Vector Borne Zoonotic Dis. 2018;18:335–42.
pubmed: 29672231 doi: 10.1089/vbz.2017.2162
Asfaram S, Fakhar M, Teshnizi SH. Is the cat an important reservoir host for visceral leishmaniasis? A systematic review with meta-analysis. J Venom Anim Toxins Incl Trop Dis. 2019;25:e20190012.
pubmed: 31258555 pmcid: 6583674 doi: 10.1590/1678-9199-jvatitd-2019-0012
Akhtardanesh B, Moeini E, Sharifi I, Saberi M, Sadeghi B, Ebrahimi M, et al. Leishmania infection in cats positive for immunodeficiency virus and feline leukemia virus in an endemic region of Iran. Vet Parasitol Reg Stud Rep. 2020;20:100387.
Nascimento LFJ, Cirilo TM, Gomes DS, Gomes ACA, Lima VFS, Scher R, et al. Epidemiological and diagnostic aspects of feline leishmaniasis with emphasis on Brazil: a narrative review. Parasitol Res. 2022;121:21–34.
pubmed: 34761278 doi: 10.1007/s00436-021-07372-9
Gosch CS, Resende BS, Amorim CB, Marques CP, Pereira LIA, Pinto SA, et al. Case report: atypical cutaneous leishmaniasis in a patient with mixed Leishmania guyanensis and Leishmania amazonensis infection. Am J Trop Med Hyg. 2018;99:1165–9.
pubmed: 30203744 pmcid: 6221246 doi: 10.4269/ajtmh.17-0760
Martinez E, Mollinedo S, Torrez M, Munoz M, Banuls AL, Le Pont F. Co-infection by Leishmania amazonensis and L. infantum/L chagasi in a case of diffuse cutaneous leishmaniasis in Bolivia. Trans R Soc Trop Med Hyg. 2002;96:529–32.
pubmed: 12474481 doi: 10.1016/S0035-9203(02)90428-1
Bartolome C, Buendia M, Benito M, De la Rua P, Ornosa C, Martin-Hernandez R, et al. A new multiplex PCR protocol to detect mixed trypanosomatid infections in species of Apis and Bombus. J Invertebr Pathol. 2018;154:37–41.
pubmed: 29608918 doi: 10.1016/j.jip.2018.03.015
Derghal M, Tebai A, Balti G, Souguir-Omrani H, Chemkhi J, Rhim A, et al. High-resolution melting analysis identifies reservoir hosts of zoonotic Leishmania parasites in Tunisia. Parasit Vectors. 2022;15:12.
pubmed: 34996507 pmcid: 8742351 doi: 10.1186/s13071-021-05138-x
Ferreira Ede C, Cruz I, Canavate C, de Melo LA, Pereira AA, Madeira FA, et al. Mixed infection of Leishmania infantum and Leishmania braziliensis in rodents from endemic urban area of the New World. BMC Vet Res. 2015;11:71.
pubmed: 25890323 doi: 10.1186/s12917-015-0392-y
Herrera L, Morocoima A, Lozano-Arias D, Garcia-Alzate R, Viettri M, Lares M, et al. Infections and coinfections by trypanosomatid parasites in a rural community of Venezuela. Acta Parasitol. 2022;67:1015–23.
pubmed: 35013940 doi: 10.1007/s11686-021-00505-1
Ma L, Jakobiec FA, Dryja TP. A review of next-generation sequencing (NGS): applications to the diagnosis of ocular infectious diseases. Semin Ophthalmol. 2019;34:223–31.
pubmed: 31170015 doi: 10.1080/08820538.2019.1620800
Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016;17:239.
pubmed: 27887629 pmcid: 5124260 doi: 10.1186/s13059-016-1103-0
Su J, Lui WW, Lee Y, Zheng Z, Siu GK, Ng TT, et al. Evaluation of Mycobacterium tuberculosis enrichment in metagenomic samples using ONT adaptive sequencing and amplicon sequencing for identification and variant calling. Sci Rep. 2023;13:5237.
pubmed: 37002338 pmcid: 10066345 doi: 10.1038/s41598-023-32378-x

Auteurs

Luz Helena Patiño (LH)

Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.

Nathalia Ballesteros (N)

Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.

Marina Muñoz (M)

Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.

Jesús Jaimes (J)

Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.

Adriana C Castillo-Castañeda (AC)

Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.

Roy Madigan (R)

Animal Hospital of Smithson Valley, 286 Singing Oaks, Ste 113, Spring Branch, TX, 78070, USA.

Alberto Paniz-Mondolfi (A)

Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.

Juan David Ramírez (JD)

Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia. juand.ramirez@urosario.edu.co.
Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. juand.ramirez@urosario.edu.co.

Classifications MeSH