The role of the gastrointestinal barrier in obesity-associated systemic inflammation.
enteric neurons
gastrointestinal dysfunction
leaky gut
obesity
systemic inflammation
Journal
Obesity reviews : an official journal of the International Association for the Study of Obesity
ISSN: 1467-789X
Titre abrégé: Obes Rev
Pays: England
ID NLM: 100897395
Informations de publication
Date de publication:
18 Dec 2023
18 Dec 2023
Historique:
revised:
05
10
2023
received:
26
01
2023
accepted:
27
10
2023
medline:
19
12
2023
pubmed:
19
12
2023
entrez:
19
12
2023
Statut:
aheadofprint
Résumé
Systemic inflammation is a key contributor to the onset and progression of several obesity-associated diseases and is thought to predominantly arise from the hyperplasia and hypertrophy of white adipose tissue. However, a growing body of works suggests that early changes in the gastrointestinal (GI) barrier may contribute to both local, within the GI lining, and systemic inflammation in obesity. Intestinal barrier dysfunction is well-characterized in inflammatory GI disorders such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) and is known to contribute to systemic inflammation. Thus, drawing parallels between GI disorders, where intestinal permeability and systemic inflammation are prominent features, and obesity-induced GI manifestations may provide insights into the potential role of the intestinal barrier in systemic inflammation in obesity. This review summarizes the current literature surrounding intestinal barrier dysfunction in obesity and explores the potential role of intestinal hyperpermeability and intestinal barrier dysfunction in the development of systemic inflammation and GI dysfunction in obesity.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13673Subventions
Organisme : National Health and Medical Research Council (NHMRC)
ID : GNT1197245
Informations de copyright
© 2023 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity Federation.
Références
DeJesus RS, Croghan IT, Jacobson DJ, Fan C, St. Sauver J. Incidence of obesity at 1 and 3 years among community dwelling adults: a population-based study. J Prim Care Community Health. 2022;13:21501319211068632. doi:10.1177/21501319211068632
Lobstein T, Brinsden H, Neveux M. World Obesity Atlas; 2022:2022.
Swinburn BA, Sacks G, Hall KD, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378(9793):804-814. doi:10.1016/S0140-6736(11)60813-1
Kanter R, Caballero B. Global gender disparities in obesity: a review. Adv Nutr. 2012;3(4):491-498. doi:10.3945/an.112.002063
Hebebrand J, Volckmar AL, Knoll N, Hinney A. Chipping away the 'missing heritability': GIANT steps forward in the molecular elucidation of obesity - but still lots to go. Obes Facts. 2010;3(5):294-303. doi:10.1159/000321537
Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15(5):288-298. doi:10.1038/s41574-019-0176-8
Meldrum DR, Morris MA, Gambone JC. Obesity pandemic: causes, consequences, and solutions-but do we have the will? Fertil Steril. 2017;107(4):833-839. doi:10.1016/j.fertnstert.2017.02.104
Tremmel M, Gerdtham U-G, Nilsson PM, Saha S. Economic burden of obesity: a systematic literature review. Int J Environ Res Public Health. 2017;14(4):435. doi:10.3390/ijerph14040435
Abdelaal M, le Roux CW, Docherty NG. Morbidity and mortality associated with obesity. Ann Translat Med. 2017;5(7):5. doi:10.21037/atm.2017.03.107
Okunogbe A, Nugent R, Spencer G, Ralston J, Wilding J. Economic impacts of overweight and obesity: current and future estimates for eight countries. BMJ Glob Health. 2021;6(10):e006351. doi:10.1136/bmjgh-2021-006351
O'Rourke RW. Inflammation in obesity-related diseases. Surgery. 2009;145(3):255-259. doi:10.1016/j.surg.2008.08.038
Ellulu MS, Patimah I, Khaza'ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13:851-863. doi:10.5114/aoms.2016.58928
Sommer F, Bäckhed F. Know your neighbor: microbiota and host epithelial cells interact locally to control intestinal function and physiology. Bioessays. 2016;38(5):455-464. doi:10.1002/bies.201500151
Ding S, Chi MM, Scull BP, et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE. 2010;5(8):e12191. doi:10.1371/journal.pone.0012191
Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci. 2007;104(3):979-984. doi:10.1073/pnas.0605374104
Eslick GD. Gastrointestinal symptoms and obesity: a meta-analysis. Obes Rev. 2012;13(5):469-479. doi:10.1111/j.1467-789X.2011.00969.x
Zatterale F, Longo M, Naderi J, et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol. 2020;10:1607. doi:10.3389/fphys.2019.01607
Kern L, Mittenbühler MJ, Vesting AJ, Ostermann AL, Wunderlich CM, Wunderlich FT. Obesity-induced TNFα and IL-6 signaling: the missing link between obesity and inflammation-driven liver and colorectal cancers. Cancer. 2018;11(1):24. doi:10.3390/cancers11010024
Straub R, Hense H, Andus T, Scholmerich J, Riegger G, Schunkert H. Hormone replacement therapy and interrelation between serum interleukin-6 and body mass index in postmenopausal women: a population-based study. J Clin Endocrinol Metabol. 2000;85(3):1340-1344. doi:10.1210/jcem.85.3.6355
Wannamethee S, Whincup P, Rumley A, Lowe G. Inter-relationships of interleukin-6, cardiovascular risk factors and the metabolic syndrome among older men. J Thromb Haemost. 2007;5(8):1637-1643. doi:10.1111/j.1538-7836.2007.02643.x
Illán-Gómez F, Gonzálvez-Ortega M, Orea-Soler I, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22(6):950-955. doi:10.1007/s11695-012-0643-y
Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers. 2017;5(4):e1373208. doi:10.1080/21688370.2017.1373208
Mattos RT, Medeiros NI, Menezes CA, et al. Chronic low-grade inflammation in childhood obesity is associated with decreased IL-10 expression by monocyte subsets. PLoS ONE. 2016;11(12):e0168610. doi:10.1371/journal.pone.0168610
Halle M, Korsten-Reck U, Wolfarth B, Berg A. Low-grade systemic inflammation in overweight children: impact of physical fitness. Exerc Immunol Rev. 2004;10:66-74.
Breslin WL, Johnston CA, Strohacker K, et al. Obese Mexican American children have elevated MCP-1, TNF-α, monocyte concentration, and dyslipidemia. Pediatrics. 2012;129(5):e1180-e1186. doi:10.1542/peds.2011-2477
Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124(1):3-22. doi:10.1016/j.jaci.2009.05.038
Stadlbauer V, Engertsberger L, Komarova I, et al. Dysbiosis, gut barrier dysfunction and inflammation in dementia: a pilot study. BMC Geriatr. 2020;20(1):248. doi:10.1186/s12877-020-01644-2
Leblhuber F, Geisler S, Steiner K, Fuchs D, Schütz B. Elevated fecal calprotectin in patients with Alzheimer's dementia indicates leaky gut. J Neural Transm. 2015;122(9):1319-1322. doi:10.1007/s00702-015-1381-9
de Magistris L, Familiari V, Pascotto A, et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr. 2010;51(4):418-424. doi:10.1097/MPG.0b013e3181dcc4a5
Stevens BR, Goel R, Seungbum K, et al. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut. 2018;67(8):1555-1557. doi:10.1136/gutjnl-2017-314759
Wärnberg J, Moreno L, Mesana M, Marcos A. Inflammatory mediators in overweight and obese Spanish adolescents. The AVENA study. Int J Obes (Lond). 2004;28(S3):S59-S63. doi:10.1038/sj.ijo.0802809
Arnardottir ES, Maislin G, Schwab RJ, et al. The interaction of obstructive sleep apnea and obesity on the inflammatory markers C-reactive protein and interleukin-6: the Icelandic sleep apnea cohort. Sleep. 2012;35(7):921-932. doi:10.5665/sleep.1952
Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6. Diabetes Res Clin Pract. 2005;69(1):29-35. doi:10.1016/j.diabres.2004.11.007
Choi J, Joseph L, Pilote L. Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. Obes Rev. 2013;14(3):232-244. doi:10.1111/obr.12003
Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470-1481. doi:10.2337/db07-1403
Shen W, Wolf PG, Carbonero F, et al. Intestinal and systemic inflammatory responses are positively associated with Sulfidogenic bacteria abundance in high-fat-fed male C57BL/6J mice. J Nutr. 2014;144(8):1181-1187. doi:10.3945/jn.114.194332
Mass M, Kubera M, Leunis J-C. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol Lett. 2008;29:117-124.
Fukui H. Increased intestinal permeability and decreased barrier function: does it really influence the risk of inflammation? Inflamm Intestinal Dis. 2016;1(3):135-145. doi:10.1159/000447252
Magro F, Langner C, Driessen A, et al. European consensus on the histopathology of inflammatory bowel disease. J Crohn's Colitis. 2013;7(10):827-851. doi:10.1016/j.crohns.2013.06.001
Kellermann L, Riis LB. A close view on histopathological changes in inflammatory bowel disease, a narrative review. Digest Med Res. 2021;4:3. doi:10.21037/dmr-21-1
Söderholm JD, Peterson KH, Olaison G, et al. Epithelial permeability to proteins in the noninflamed ileum of Crohn's disease? Gastroenterology. 1999;117(1):65-72. doi:10.1016/S0016-5085(99)70551-2
Welcker K, Martin A, Kolle P, Siebeck M, Gross M. Increased intestinal permeability in patients with inflammatory bowel disease. Eur J Med Res. 2004;9(10):456-460.
SaY S, Söderholm JD. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17(1):362-381. doi:10.1002/ibd.21403
Lee SH. Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intestinal Res. 2015;13(1):11-18. doi:10.5217/ir.2015.13.1.11
Zeissig S, Bürgel N, Günzel D, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut. 2007;56(1):61-72. doi:10.1136/gut.2006.094375
Vetrano S, Rescigno M, Cera MR, et al. Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology. 2008;135(1):173-184. doi:10.1053/j.gastro.2008.04.002
Edelblum KL, Turner JR. The tight junction in inflammatory disease: communication breakdown. Curr Opin Pharmacol. 2009;9(6):715-720. doi:10.1016/j.coph.2009.06.022
Krug SM, Schulzke JD, Fromm M. Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol Elsevier. 2014;36:166-176. doi:10.1016/j.semcdb.2014.09.002
Gersemann M, Becker S, Kübler I, et al. Differences in goblet cell differentiation between Crohn's disease and ulcerative colitis. Differentiation. 2009;77(1):84-94. doi:10.1016/j.diff.2008.09.008
Pullan R, Thomas G, Rhodes M, et al. Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut. 1994;35(3):353-359. doi:10.1136/gut.35.3.353
Larsson JMH, Karlsson H, Crespo JG, et al. Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm Bowel Dis. 2011;17(11):2299-2307. doi:10.1002/ibd.21625
van der Post S, Jabbar KS, Birchenough G, et al. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut. 2019;68(12):2142-2151. doi:10.1136/gutjnl-2018-317571
Glassner KL, Abraham BP, Quigley EM. The microbiome and inflammatory bowel disease. J Allergy Clin Immunol. 2020;145(1):16-27. doi:10.1016/j.jaci.2019.11.003
Sokol H, Seksik P. The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Curr Opin Gastroenterol. 2010;26(4):327-331. doi:10.1097/MOG.0b013e328339536b
Knights D, Silverberg MS, Weersma RK, et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 2014;6(12):107. doi:10.1186/s13073-014-0107-1
Morgan XC, Tickle TL, Sokol H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):1-18. doi:10.1186/gb-2012-13-9-r79
Leppkes M, Neurath M. Cytokines in inflammatory bowel diseases-update 2020. Pharmacol Res. 2020;158:104835. doi:10.1016/j.phrs.2020.104835
Bevivino G, Monteleone G. Advances in understanding the role of cytokines in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol. 2018;12(9):907-915. doi:10.1080/17474124.2018.1503053
Coëffier M, Gloro R, Boukhettala N, et al. Increased proteasome-mediated degradation of occludin in irritable bowel syndrome. Am J Gastroenterol. 2010;105(5):1181-1188. doi:10.1038/ajg.2009.700
Wilcz-Villega E, McClean S, O'Sullivan M. Reduced E-cadherin expression is associated with abdominal pain and symptom duration in a study of alternating and diarrhea predominant IBS. Neurogastroenterol Motil. 2014;26(3):316-325. doi:10.1111/nmo.12262
Bertiaux-Vandaële N, Youmba SB, Belmonte L, et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Off J am Coll Gastroenterol|ACG. 2011;106(12):2165-2173. doi:10.1038/ajg.2011.257
Shi H, Wan J, Liu W, Su B. An analysis for the clinical difference between post infectious irritable bowel syndrome and non post infectious irritable bowel syndrome. Zhonghua Nei Ke Za Zhi. 2015;54(4):326-329.
Spiller R, Jenkins D, Thornley J, et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acuteCampylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut. 2000;47(6):804-811. doi:10.1136/gut.47.6.804
Chadwick VS, Chen W, Shu D, et al. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology. 2002;122(7):1778-1783. doi:10.1053/gast.2002.33579
Piche T, Saint-Paul MC, Dainese R, et al. Mast cells and cellularity of the colonic mucosa correlated with fatigue and depression in irritable bowel syndrome. Gut. 2008;57(4):468-473. doi:10.1136/gut.2007.127068
Dunlop SP, Jenkins D, Spiller RC. Distinctive clinical, psychological, and histological features of postinfective irritable bowel syndrome. Am J Gastroenterol. 2003;98(7):1578-1583. doi:10.1111/j.1572-0241.2003.07542.x
Törnblom H, Lindberg G, Nyberg B, Veress B. Full-thickness biopsy of the jejunum reveals inflammation and enteric neuropathy in irritable bowel syndrome. Gastroenterology. 2002;123(6):1972-1979. doi:10.1053/gast.2002.37059
Mujagic Z, Ludidi S, Keszthelyi D, et al. Small intestinal permeability is increased in diarrhoea predominant IBS, while alterations in gastroduodenal permeability in all IBS subtypes are largely attributable to confounders. Aliment Pharmacol Ther. 2014;40(3):288-297. doi:10.1111/apt.12829
Genser L, Aguanno D, Soula HA, et al. Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. J Pathol. 2018;246(2):217-230. doi:10.1002/path.5134
Brignardello J, Morales P, Diaz E, Romero J, Brunser O, Gotteland M. Pilot study: alterations of intestinal microbiota in obese humans are not associated with colonic inflammation or disturbances of barrier function. Aliment Pharmacol Ther. 2010;32(11-12):1307-1314. doi:10.1111/j.1365-2036.2010.04475.x
Ghosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal barrier dysfunction, LPS translocation, and disease development. J Endocr Soc. 2020;4(2):bvz039. doi:10.1210/jendso/bvz039
Kaminsky LW, Al-Sadi R, Ma TY. Il-1β and the intestinal epithelial tight junction barrier. Front Immunol. 2021;12:767456. doi:10.3389/fimmu.2021.767456
Zuo L, Kuo W-T, Turner JR. Tight junctions as targets and effectors of mucosal immune homeostasis. Cell Mol Gastroenterol Hepatol. 2020;10(2):327-340. doi:10.1016/j.jcmgh.2020.04.001
Ding L, Lu Z, Foreman O, et al. Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology. 2012;142(2):305-315. doi:10.1053/j.gastro.2011.10.025
Saitou M, Furuse M, Sasaki H, et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell. 2000;11(12):4131-4142. doi:10.1091/mbc.11.12.4131
Raju P, Shashikanth N, Tsai P-Y, et al. Inactivation of paracellular cation-selective claudin-2 channels attenuates immune-mediated experimental colitis in mice. J Clin Invest. 2020;130(10):5197-5208. doi:10.1172/JCI138697
Nascimento J, Matheus V, Oliveira R, Tada S, Collares-Buzato CB. High-fat diet induces disruption of the tight junction-mediated paracellular barrier in the proximal small intestine before the onset of type 2 diabetes and endotoxemia. Dig Dis Sci. 2021;66(10):3359-3374. doi:10.1007/s10620-020-06664-x
Ahmad R, Rah B, Bastola D, Dhawan P, Singh AB. Obesity-induces organ and tissue specific tight junction restructuring and barrier deregulation by claudin switching. Sci Rep. 2017;7(1):5125. doi:10.1038/s41598-017-04989-8
Spagnuolo MI, Cicalese MP, Caiazzo MA, et al. Relationship between severe obesity and gut inflammation in children: what's next? Ital J Pediatr. 2010;36(1):1-6. doi:10.1186/1824-7288-36-66
Verdam FJ, Fuentes S, de Jonge C, et al. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity. 2013;21(12):E607-E615. doi:10.1002/oby.20466
Pendyala S, Neff LM, Suárez-Fariñas M, Holt PR. Diet-induced weight loss reduces colorectal inflammation: implications for colorectal carcinogenesis. Am J Clin Nutr. 2011;93(2):234-242. doi:10.3945/ajcn.110.002683
Tiihonen K, Ouwehand AC, Rautonen N. Effect of overweight on gastrointestinal microbiology and immunology: correlation with blood biomarkers. Br J Nutr. 2010;103(7):1070-1078. doi:10.1017/S0007114509992807
Muscogiuri G, Cantone E, Cassarano S, et al. Gut microbiota: a new path to treat obesity. Int J Obes Suppl. 2019;9(1):10-19. doi:10.1038/s41367-019-0011-7
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 2006;444(7122):1022-1023. doi:10.1038/4441022a
Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol. 2009;587(17):4153-4158. doi:10.1113/jphysiol.2009.174136
Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480-484. doi:10.1038/nature07540
Bervoets L, Van Hoorenbeeck K, Kortleven I, et al. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathogens. 2013;5(1):1-10. doi:10.1186/1757-4749-5-10
Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in lactobacillus in obese patients and methanogens in anorexic patients. PLoS ONE. 2009;4(9):e7125. doi:10.1371/journal.pone.0007125
Kalliomäki M, Carmen Collado M, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87(3):534-538. doi:10.1093/ajcn/87.3.534
Santacruz A, Collado MC, Garcia-Valdes L, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010;104(1):83-92. doi:10.1017/S0007114510000176
Collado MC, Isolauri E, Laitinen K, Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 2008;88(4):894-899. doi:10.1093/ajcn/88.4.894
Carlsson AH, Yakymenko O, Olivier I, et al. Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis. Scand J Gastroenterol. 2013;48(10):1136-1144. doi:10.3109/00365521.2013.828773
Balamurugan R, George G, Kabeerdoss J, Hepsiba J, Chandragunasekaran AM, Ramakrishna BS. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br J Nutr. 2010;103(3):335-338. doi:10.1017/S0007114509992182
Feng J, Tang H, Li M, et al. The abundance of fecal Faecalibacterium prausnitzii in relation to obesity and gender in Chinese adults. Arch Microbiol. 2014;196(1):73-77. doi:10.1007/s00203-013-0942-2
Martín R, Miquel S, Chain F, et al. Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol. 2015;15(1):67. doi:10.1186/s12866-015-0400-1
Magne F, Gotteland M, Gauthier L, et al. The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients. 2020;12(5):1474. doi:10.3390/nu12051474
Kim M-H, Yun KE, Kim J, et al. Gut microbiota and metabolic health among overweight and obese individuals. Sci Rep. 2020;10:1-11.
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492-506. doi:10.1038/s41422-020-0332-7
Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol. 2013;27(1):73-83. doi:10.1016/j.bpg.2013.03.007
Patterson E, Ryan PM, Cryan JF, et al. Gut microbiota, obesity and diabetes. Postgrad Med J. 2016;92(1087):286-300. doi:10.1136/postgradmedj-2015-133285
Bauer H, Horowitz RE, Levenson SM, Popper H. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am J Pathol. 1963;42(4):471-483.
Nyavor Y, Brands CR, May G, et al. High-fat diet-induced alterations to gut microbiota and gut-derived lipoteichoic acid contributes to the development of enteric neuropathy. Neurogastroenterol Motil. 2020;32(7):e13838. doi:10.1111/nmo.13838
Nyavor Y, Brands CR, Nicholson J, et al. Supernatants of intestinal luminal contents from mice fed high-fat diet impair intestinal motility by injuring enteric neurons and smooth muscle cells. Neurogastroenterol Motil. 2021;33(1):e13990. doi:10.1111/nmo.13990
Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol. 2020;17(6):338-351. doi:10.1038/s41575-020-0271-2
De Giorgio R, Guerrini S, Barbara G, et al. Inflammatory neuropathies of the enteric nervous system. Gastroenterology. 2004;126(7):1872-1883. doi:10.1053/j.gastro.2004.02.024
Margolis KG, Gershon MD. Enteric neuronal regulation of intestinal inflammation. Trends Neurosci. 2016;39(9):614-624. doi:10.1016/j.tins.2016.06.007
Yoo BB, Mazmanian SK. The enteric network: interactions between the immune and nervous systems of the gut. Immunity. 2017;46(6):910-926. doi:10.1016/j.immuni.2017.05.011
Jacobson A, Yang D, Vella M, Chiu IM. The intestinal neuro-immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol. 2021;14(3):555-565. doi:10.1038/s41385-020-00368-1
Drokhlyansky E, Smillie CS, Van Wittenberghe N, et al. The human and mouse enteric nervous system at single-cell resolution. Cell. 2020;182:1606-1622.e23. doi:10.1016/j.cell.2020.08.003
Wang H, Foong JP, Harris NL, Bornstein JC. Enteric neuroimmune interactions coordinate intestinal responses in health and disease. Mucosal Immunol. 2022;15(1):27-39. doi:10.1038/s41385-021-00443-1
Schneider KM, Kim J, Bahnsen K, Heuckeroth RO, Thaiss CA. Environmental perception and control of gastrointestinal immunity by the enteric nervous system. Trends Mol Med. 2022;28(11):989-1005. doi:10.1016/j.molmed.2022.09.005
Muller P, Koscsˇ B, Rajani G, et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell. 2014;158(2):300-313. doi:10.1016/j.cell.2014.04.050
Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci. 2016;73(22):4249-4264. doi:10.1007/s00018-016-2293-z
Chandrasekharan B, Nezami BG, Srinivasan S. Emerging neuropeptide targets in inflammation: NPY and VIP. American journal of physiology-gastrointestinal and liver. Phys Ther. 2013;304(11):G949-G957. doi:10.1152/ajpgi.00493.2012
Gabanyi I, Muller PA, Feighery L, Oliveira TY, Costa-Pinto FA, Mucida D. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell. 2016;164(3):378-391. doi:10.1016/j.cell.2015.12.023
Grubišić V, McClain JL, Fried DE, et al. Enteric glia modulate macrophage phenotype and visceral sensitivity following inflammation. Cell Rep. 2020;32(10):108100. doi:10.1016/j.celrep.2020.108100
Ye L, Li G, Goebel A, et al. Caspase-11-mediated enteric neuronal pyroptosis underlies Western diet-induced colonic dysmotility. J Clin Invest. 2020;130(7):3621-3636. doi:10.1172/JCI130176
Voss U, Sand E, Olde B, Ekblad E. Enteric neuropathy can be induced by high fat diet in vivo and palmitic acid exposure in vitro. PLoS ONE. 2013;8(12):e81413. doi:10.1371/journal.pone.0081413
Nyavor Y, Estill R, Edwards H, et al. Intestinal nerve cell injury occurs prior to insulin resistance in female mice ingesting a high-fat diet. Cell Tissue Res. 2019;376(3):325-340. doi:10.1007/s00441-019-03002-0
Stenkamp-Strahm CM, Nyavor YE, Kappmeyer AJ, Horton S, Gericke M, Balemba OB. Prolonged high fat diet ingestion, obesity, and type 2 diabetes symptoms correlate with phenotypic plasticity in myenteric neurons and nerve damage in the mouse duodenum. Cell Tissue Res. 2015;361(2):411-426. doi:10.1007/s00441-015-2132-9
Nezami BG, Mwangi SM, Lee JE, et al. MicroRNA 375 mediates palmitate-induced enteric neuronal damage and high-fat diet-induced delayed intestinal transit in mice. Gastroenterology. 2014;146:473-83.e3. doi:10.1053/j.gastro.2013.10.053
Almeida PP, Valdetaro L, BBdM T, Stockler-Pinto MB, Tavares-Gomes AL. High-fat diets on the enteric nervous system: possible interactions and mechanisms underlying dysmotility. Obes Rev. 2021;23(4):e13404. doi:10.1111/obr.13404
Nam SY. Obesity-related digestive diseases and their pathophysiology. Gut Liver. 2017;11(3):323-334. doi:10.5009/gnl15557
Delgado-Aros S, Locke GRI, Camilleri M, et al. Obesity is associated with increased risk of gastrointestinal symptoms: a population-based study. Off J am Coll Gastroenterol|ACG. 2004;99(9):1801-1806. doi:10.1111/j.1572-0241.2004.30887.x
Aro P, Ronkainen J, Talley NJ, Storskrubb T, Bolling-Sternevald E, Agréus L. Body mass index and chronic unexplained gastrointestinal symptoms: an adult endoscopic population based study. Gut. 2005;54(10):1377-1383. doi:10.1136/gut.2004.057497
Yurtdaş G, Acar-Tek N, Akbulut G, et al. Risk factors for constipation in adults: a cross-sectional study. J am Coll Nutr. 2020;39(8):713-719. doi:10.1080/07315724.2020.1727380
Formoso G, Taraborrelli M, Guagnano MT, et al. Magnetic resonance imaging determined visceral fat reduction associates with enhanced IL-10 plasma levels in calorie restricted obese subjects. PLoS ONE. 2012;7(12):e52774. doi:10.1371/journal.pone.0052774
Al Mushref M, Srinivasan S. Effect of high fat-diet and obesity on gastrointestinal motility. Ann Translat Med. 2013;1.
vd Baan-Slootweg OH, Liem O, Bekkali N, et al. Constipation and colonic transit times in children with morbid obesity. J Pediatr Gastroenterol Nutr. 2011;52(4):442-445. doi:10.1097/MPG.0b013e3181ef8e3c
Madison A, Kiecolt-Glaser JK. Stress, depression, diet, and the gut microbiota: human-bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr Opin Behav Sci. 2019;28:105-110. doi:10.1016/j.cobeha.2019.01.011
Zheng G, Wu SP, Hu Y, Smith DE, Wiley JW, Hong S. Corticosterone mediates stress-related increased intestinal permeability in a region-specific manner. Neurogastroenterol Motil. 2013;25(2):e127-e139. doi:10.1111/nmo.12066
Cameron HL, Perdue MH. Stress impairs murine intestinal barrier function: improvement by glucagon-like peptide-2. J Pharmacol Exp Ther. 2005;314(1):214-220. doi:10.1124/jpet.105.085373
Øines E, Murison R, Mrdalj J, Grønli J, Milde A. Neonatal maternal separation in male rats increases intestinal permeability and affects behavior after chronic social stress. Physiol Behav. 2012;105(4):1058-1066. doi:10.1016/j.physbeh.2011.11.024
Moussaoui N, Braniste V, Ait-Belgnaoui A, et al. Changes in intestinal glucocorticoid sensitivity in early life shape the risk of epithelial barrier defect in maternal-deprived rats. PLoS ONE. 2014;9(2):e88382. doi:10.1371/journal.pone.0088382
Moussaoui N, Jacobs JP, Larauche M, et al. Chronic early-life stress in rat pups alters basal corticosterone, intestinal permeability, and fecal microbiota at weaning: influence of sex. J Neurogastroenterol Motility. 2017;23(1):135-143. doi:10.5056/jnm16105
Barreau F, Ferrier L, Fioramonti J, Bueno L. Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats. Gut. 2004;53(4):501-506. doi:10.1136/gut.2003.024174
Vanuytsel T, Van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut. 2014;63(8):1293-1299. doi:10.1136/gutjnl-2013-305690
Kiecolt-Glaser JK, Wilson SJ, Bailey ML, et al. Marital distress, depression, and a leaky gut: translocation of bacterial endotoxin as a pathway to inflammation. Psychoneuroendocrinology. 2018;98:52-60. doi:10.1016/j.psyneuen.2018.08.007
Zamani M, Alizadeh-Tabari S, Zamani V. Systematic review with meta-analysis: the prevalence of anxiety and depression in patients with irritable bowel syndrome. Aliment Pharmacol Ther. 2019;50(2):132-143. doi:10.1111/apt.15325
Zhang Q-E, Wang F, Qin G, et al. Depressive symptoms in patients with irritable bowel syndrome: a meta-analysis of comparative studies. Int J Biol Sci. 2018;14(11):1504-1512. doi:10.7150/ijbs.25001
Lee C, Doo E, Choi JM, et al. The increased level of depression and anxiety in irritable bowel syndrome patients compared with healthy controls: systematic review and meta-analysis. J Neurogastroenterol Motility. 2017;23(3):349-362. doi:10.5056/jnm16220
Fond G, Loundou A, Hamdani N, et al. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): a systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci. 2014;264(8):651-660. doi:10.1007/s00406-014-0502-z
Choi K, Chun J, Han K, et al. Risk of anxiety and depression in patients with inflammatory bowel disease: a nationwide, population-based study. J Clin Med. 2019;8(5):654. doi:10.3390/jcm8050654
Barberio B, Zamani M, Black CJ, Savarino EV, Ford AC. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2021;6(5):359-370. doi:10.1016/S2468-1253(21)00014-5
Steptoe A, Hamer M, Chida Y. The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav Immun. 2007;21(7):901-912. doi:10.1016/j.bbi.2007.03.011
Campos-Rodríguez R, Godínez-Victoria M, Abarca-Rojano E, et al. Stress modulates intestinal secretory immunoglobulin A. Front Integr Neurosci. 2013;7:86. doi:10.3389/fnint.2013.00086
Santos J, Alonso C, Vicario M, Ramos L, Lobo B, Malagelada J. Neuropharmacology of stress-induced mucosal inflammation: implications for inflammatory bowel disease and irritable bowel syndrome. Curr Mol Med. 2008;8(4):258-273. doi:10.2174/156652408784533788
Schneider KM, Blank N, Alvarez Y, et al. The enteric nervous system relays psychological stress to intestinal inflammation. Cell. 2023;186:2823-2838.e20. doi:10.1016/j.cell.2023.05.001
Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci. 2018;12:49. doi:10.3389/fnins.2018.00049
Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front Psych. 2018;9:44. doi:10.3389/fpsyt.2018.00044
Tan C, Yan Q, Ma Y, Fang J, Yang Y. Recognizing the role of the vagus nerve in depression from microbiota-gut brain axis. Front Neurol. 2022;13:1015175. doi:10.3389/fneur.2022.1015175
Bonaz B, Sinniger V, Pellissier S. The vagus nerve in the neuro-immune axis: implications in the pathology of the gastrointestinal tract. Front Immunol. 2017;8:1452. doi:10.3389/fimmu.2017.01452
Andresen V, Camilleri M, Busciglio IA, et al. Effect of 5 days linaclotide on transit and bowel function in females with constipation-predominant irritable bowel syndrome. Gastroenterology. 2007;133(3):761-768. doi:10.1053/j.gastro.2007.06.067
Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The role of the autonomic nervous system in the pathophysiology of obesity. Front Physiol. 2017;8:665. doi:10.3389/fphys.2017.00665
Horn CC, Ardell JL, Fisher LE. Electroceutical targeting of the autonomic nervous system. Phys Ther. 2019;34(2):150-162. doi:10.1152/physiol.00030.2018
Arone L, Mackintosh R, Rosenbaum M, Leibel RL, Hirsch J. Autonomic nervous system activity in weight gain and weight loss. Am J Physiol-Regulat Integr Comparative Physiol. 1995;269(1):R222-R225. doi:10.1152/ajpregu.1995.269.1.R222
Morton JM, Shah SN, Wolfe BM, et al. Effect of vagal nerve blockade on moderate obesity with an obesity-related comorbid condition: the ReCharge study. Obes Surg. 2016;26(5):983-989. doi:10.1007/s11695-016-2143-y
Koopman FA, Chavan SS, Miljko S, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci. 2016;113(29):8284-8289. doi:10.1073/pnas.1605635113