Dissection of FOXO1-Induced LYPLAL1-DT Impeding Triple-Negative Breast Cancer Progression via Mediating hnRNPK/β-Catenin Complex.
Journal
Research (Washington, D.C.)
ISSN: 2639-5274
Titre abrégé: Research (Wash D C)
Pays: United States
ID NLM: 101747148
Informations de publication
Date de publication:
2023
2023
Historique:
received:
18
09
2023
accepted:
26
11
2023
medline:
19
12
2023
pubmed:
19
12
2023
entrez:
19
12
2023
Statut:
epublish
Résumé
Triple-negative breast cancer (TNBC) is considered as the most hazardous subtype of breast cancer owing to its accelerated progression, enormous metastatic potential, and refractoriness to standard treatments. Long noncoding RNAs (lncRNAs) are extremely intricate in tumorigenesis and cancerous metastasis. Nonetheless, their roles in the initiation and augmentation of TNBC remain elusive. Here, in silico analysis and validation experiments were utilized to analyze the expression pattern of clinically effective lncRNAs in TNBC, among which a protective lncRNA LYPLAL1-DT was essentially curbed in TNBC samples and indicated a favorable prognosis. Gain- and loss-of-function assays elucidated that LYPLAL1-DT considerably attenuated the proliferative and metastatic properties along with epithelial-mesenchymal transition of TNBC cells. Moreover, forkhead box O1 (FOXO1) was validated to modulate the transcription of LYPLAL1-DT. Mechanistically, LYPLAL1-DT impinged on the malignancy of TNBC mainly by restraining the aberrant reactivation of the Wnt/β-catenin signaling pathway, explicitly destabilizing and diminishing β-catenin protein by interacting with heterogeneous nuclear ribonucleoprotein K (hnRNPK) and constricting the formation of the hnRNPK/β-catenin complex. Conclusively, our present research revealed the anti-oncogenic effects of LYPLAL1-DT in TNBC, unraveling the molecular mechanisms of the FOXO1/LYPLAL1-DT/hnRNPK/β-catenin signaling axis, which shed innovative light on the potential curative medicine of TNBC.
Identifiants
pubmed: 38111678
doi: 10.34133/research.0289
pii: 0289
pmc: PMC10726293
doi:
Types de publication
Journal Article
Langues
eng
Pagination
0289Informations de copyright
Copyright © 2023 Yuhui Tang et al.
Déclaration de conflit d'intérêts
Competing interests: The authors declare that they have no competing interests.