Ruxolitinib Rescues Multiorgan Clinical Autoimmunity in Patients with APS-1.

AIRE APS-1 Jak inhibitor Ruxolitinib

Journal

Journal of clinical immunology
ISSN: 1573-2592
Titre abrégé: J Clin Immunol
Pays: Netherlands
ID NLM: 8102137

Informations de publication

Date de publication:
19 Dec 2023
Historique:
received: 03 11 2023
accepted: 21 11 2023
medline: 19 12 2023
pubmed: 19 12 2023
entrez: 19 12 2023
Statut: epublish

Résumé

Autoimmune polyendocrine syndrome type-1 (APS-1) is caused by mono- or biallelic loss-of-function variants of the autoimmune regulator gene AIRE underlying early-onset multiorgan autoimmunity and the production of neutralizing autoantibodies against cytokines, accounting for mucosal candidiasis and viral diseases. Medical intervention is essential to prevent or attenuate autoimmune manifestations. Ruxolitinib is a JAK inhibitor approved for use in several autoimmune conditions. It is also used off-label to treat autoimmune manifestations of a growing range of inborn errors of immunity. We treated three APS-1 patients with ruxolitinib and followed them for at least 30 months. Tolerance was excellent, with no medical or biological adverse events. All three patients had remarkably positive responses to ruxolitinib for alopecia, nail dystrophy, keratitis, mucosal candidiasis, steroid-dependent autoimmune hepatitis, exocrine pancreatic insufficiency, renal potassium wasting, hypoparathyroidism, and diabetes insipidus. JAK inhibitors were therefore considered an effective treatment in three patients with APS-1. Our observations suggest that JAK/STAT pathways are involved in the pathogenesis of APS-1 autoimmune manifestations. They also suggest that JAK inhibitors should be tested in a broader range of APS-1 patients.

Identifiants

pubmed: 38112858
doi: 10.1007/s10875-023-01629-x
pii: 10.1007/s10875-023-01629-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5

Informations de copyright

© 2023. The Author(s).

Références

Nagamine K, Peterson P, Scott HS, et al. Positional cloning of the APECED gene. Nat Genet. 1997;17(4):393–8.
doi: 10.1038/ng1297-393 pubmed: 9398839
Finnish-German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet. 1997;17(4):399–403.
doi: 10.1038/ng1297-399
Oftedal BE, Hellesen A, Erichsen MM, et al. Dominant mutations in the autoimmune regulator AIRE are associated with common organ-specific autoimmune diseases. Immunity. 2015;42(6):1185–96.
doi: 10.1016/j.immuni.2015.04.021 pubmed: 26084028
Husebye ES, Anderson MS, Kämpe O. Autoimmune polyendocrine syndromes. N Engl J Med. 2018;378:1132–41.
doi: 10.1056/NEJMra1713301 pubmed: 29562162 pmcid: 6007870
Kisand K, Peterson P. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. J Clin Immunol. 2015;35(5):463–78.
doi: 10.1007/s10875-015-0176-y pubmed: 26141571
Ferré EMN, Schmitt MM, Lionakis MS. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Front Pediatr. 2021;9:723532.
doi: 10.3389/fped.2021.723532 pubmed: 34790633 pmcid: 8591095
Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298(5597):1395–401.
doi: 10.1126/science.1075958 pubmed: 12376594
Puel A, Döffinger R, Natividad A, et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med. 2010;207(2):291–7.
doi: 10.1084/jem.20091983 pubmed: 20123958 pmcid: 2822614
Kisand K, Bøe Wolff AS, Podkrajsek KT, Tserel L, Link M, Kisand KV, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010;207:299–308.
doi: 10.1084/jem.20091669 pubmed: 20123959 pmcid: 2822605
Meager A, Visvalingam K, Peterson P, et al. Anti-interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. Plos Med. 2006;3(7):e289.
doi: 10.1371/journal.pmed.0030289 pubmed: 16784312 pmcid: 1475653
Meloni A, Furcas M, Cetani F, et al. Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab. 2008;93(11):4389–97.
doi: 10.1210/jc.2008-0935 pubmed: 18728167
Ahonen P, Myllärniemi S, Sipilä I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med. 1990;322(26):1829–36.
doi: 10.1056/NEJM199006283222601 pubmed: 2348835
Kluger N, Jokinen M, Krohn K, Ranki A. What is the burden of living with autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) in 2012? A health-related quality-of-life assessment in Finnish patients. Clin Endocrinol (Oxf). 2013;79(1):134–41.
doi: 10.1111/cen.12087 pubmed: 23113742
Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann H-H, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370.
Bastard P, Orlova E, Sozaeva L, Lévy R, James A, Schmitt MM, et al. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J Exp Med. 2021;218.
Casanova J-L, Anderson MS. Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs. J Clin Invest. 2023;133:e166283.
Chascsa DM, Ferré EMN, Hadjiyannis Y, et al. APECED-Associated hepatitis: Clinical, biochemical, histological and treatment data from a large predominantly American cohort. Hepatology. 2021;73(3):1088–104.
doi: 10.1002/hep.31421 pubmed: 32557834
Ferré EMN, Break TJ, Burbelo PD, et al. Lymphocyte-driven regional immunopathology in pneumonitis caused by impaired central immune tolerance. Sci Transl Med. 2019;11(495):eaav5597.
doi: 10.1126/scitranslmed.aav5597 pubmed: 31167928 pmcid: 6647037
Sarfati E, Hadjadj J, Fusaro M, et al. Life-Saving, Dose-Adjusted, Targeted Therapy in a Patient with a STAT3 Gain-of-Function Mutation. J Clin Immunol. 2021;41(4):807–10.
doi: 10.1007/s10875-020-00914-3 pubmed: 33428086
Forbes LR, Vogel TP, Cooper MA, et al. Jakinibs for the treatment of immune dysregulation in patients with gain-of-function signal transducer and activator of transcription 1 (STAT1) or STAT3 mutations. J Allergy Clin Immunol. 2018;142(5):1665–9.
doi: 10.1016/j.jaci.2018.07.020 pubmed: 30092289 pmcid: 6322659
Fischer M, Olbrich P, Hadjadj J, Aumann V, Bakhtiar S, Barlogis V, et al. JAK-inhibitor treatment for inborn errors of JAK/STAT signaling: An ESID and EBMT IEWP retrospective study. J Allergy Clin Immunol. 2023;S0091–6749(23):01390–8.
Frémond M-L, Hully M, Fournier B, et al. JAK Inhibition in Aicardi-Goutières syndrome: A monocentric multidisciplinary real-world approach study. J Clin Immunol. 2023;43(6):1436–47.
doi: 10.1007/s10875-023-01500-z pubmed: 37171742 pmcid: 10175907
Ferre EMN, Rose SR, Rosenzweig SD, et al. Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. JCI Insight. 2016;1(13):e88782.
doi: 10.1172/jci.insight.88782 pubmed: 27588307 pmcid: 5004733
Bruserud Ø, Oftedal BE, Landegren N, et al. A Longitudinal Follow-up of Autoimmune Polyendocrine Syndrome Type 1. J Clin Endocrinol Metab. 2016;101(8):2975–83.
doi: 10.1210/jc.2016-1821 pubmed: 27253668 pmcid: 4971337
Liu C, Kieltyka J, Fleischmann R, Gadina M, O’Shea JJ. A decade of JAK inhibitors: What have we learned and what may be the future? Arthritis Rheumatol. 2021;73(12):2166–78.
doi: 10.1002/art.41906 pubmed: 34180156 pmcid: 8671145
Hetemäki I, Laakso S, Välimaa H, et al. Patients with autoimmune polyendocrine syndrome type 1 have an increased susceptibility to severe herpesvirus infections. Clin Immunol. 2021;231:108851.
doi: 10.1016/j.clim.2021.108851 pubmed: 34508889 pmcid: 8425955
Adam S, Simon N, Steffen U, et al. JAK inhibition increases bone mass in steady-state conditions and ameliorates pathological bone loss by stimulating osteoblast function. Sci Transl Med. 2020;12(530):eaay4447.
doi: 10.1126/scitranslmed.aay4447 pubmed: 32051226
Luo Y, Alexander M, Gadina M, O’Shea JJ, Meylan F, Schwartz DM. JAK-STAT signaling in human disease: From genetic syndromes to clinical inhibition. J Allergy Clin Immunol. 2021;148(4):911–25.
doi: 10.1016/j.jaci.2021.08.004 pubmed: 34625141 pmcid: 8514054

Auteurs

Romain Lévy (R)

Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, EU, France. romain.levy@inserm.fr.
Paris-Cité University, Imagine Institute, Paris, EU, France. romain.levy@inserm.fr.
Pediatric Hematology, Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France. romain.levy@inserm.fr.
St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. romain.levy@inserm.fr.

Agathe Escudier (A)

Paris-Cité University, Imagine Institute, Paris, EU, France.
Pediatric Hematology, Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.

Paul Bastard (P)

Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, EU, France.
Paris-Cité University, Imagine Institute, Paris, EU, France.
Pediatric Hematology, Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.
St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.

Coralie Briand (C)

Department of Pediatrics, Jean Verdier Hospital, AP-HP, Bondy, EU, France.

Laura Polivka (L)

Paris-Cité University, Imagine Institute, Paris, EU, France.
Department of Dermatology, Reference Center for Genodermatoses (MAGEC), Imagine Institute, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.

Athanasia Stoupa (A)

Pediatric Endocrinology, Gynecology and Diabetology Department, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.

Cécile Talbotec (C)

Department of Pediatric Gastroenterology, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.

Anya Rothenbuhler (A)

Department of Endocrinology and Diabetes for Children; Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, Filière OSCAR, ERN BOND, Endo-ERN, Bicêtre Paris Saclay Hospital, AP-HP, Le Kremlin-Bicêtre, EU, France.

Marina Charbit (M)

Department of Pediatric Nephrology, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.

Dominique Debray (D)

Department of Pediatric Hepatology, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.

Christine Bodemer (C)

Paris-Cité University, Imagine Institute, Paris, EU, France.
Department of Dermatology, Reference Center for Genodermatoses (MAGEC), Imagine Institute, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.

Jean-Laurent Casanova (JL)

Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, EU, France.
Paris-Cité University, Imagine Institute, Paris, EU, France.
Pediatric Hematology, Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.
St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
Howard Hughes Medical Institute, New York, NY, USA.

Agnès Linglart (A)

Department of Endocrinology and Diabetes for Children; Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, Filière OSCAR, ERN BOND, Endo-ERN, Bicêtre Paris Saclay Hospital, AP-HP, Le Kremlin-Bicêtre, EU, France.
Paris Saclay University, INSERM U1185, Bicêtre Paris Saclay Hospital, Le Kremlin-Bicêtre, EU, France.

Bénédicte Neven (B)

Paris-Cité University, Imagine Institute, Paris, EU, France.
Pediatric Hematology, Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.

Classifications MeSH