Functional characterization of Nosema bombycis (microsporidia) trehalase 3.
Bombyx mori
Nosema bombycis
RNA interference (RNAi)
Trehalase
Journal
Parasitology research
ISSN: 1432-1955
Titre abrégé: Parasitol Res
Pays: Germany
ID NLM: 8703571
Informations de publication
Date de publication:
19 Dec 2023
19 Dec 2023
Historique:
received:
20
09
2023
accepted:
29
11
2023
medline:
19
12
2023
pubmed:
19
12
2023
entrez:
19
12
2023
Statut:
epublish
Résumé
Nosema bombycis, an obligate intracellular parasite, is a single-celled eukaryote known to infect various tissues of silkworms, leading to the manifestation of pebrine. Trehalase, a glycosidase responsible for catalyzing the hydrolysis of trehalose into two glucose molecules, assumes a crucial role in thermal stress tolerance, dehydration, desiccation stress, and asexual development. Despite its recognized importance in these processes, the specific role of trehalase in N. bombycis remains uncertain. This investigation focused on exploring the functions of trehalase 3 in N. bombycis (NbTre3). Immunofluorescence analysis of mature (dormant) spores indicated that NbTre3 primarily localizes to the spore membrane or spore wall, suggesting a potential involvement in spore germination. Reverse transcription-quantitative polymerase chain reaction results indicated that the transcriptional level of NbTre3 peaked at 6 h post N. bombycis infection, potentially contributing to energy storage for proliferation. Throughout the life cycle of N. bombycis within the host cell, NbTre3 was detected in sporoplasm during the proliferative stage rather than the sporulation stage. RNA interference experiments revealed a substantial decrease in the relative transcriptional level of NbTre3, accompanied by a certain reduction in the relative transcriptional level of Nb16S rRNA. These outcomes suggest that NbTre3 may play a role in the proliferation of N. bombycis. The application of the His pull-down technique identified 28 proteins interacting with NbTre3, predominantly originating from the host silkworm. This finding implies that NbTre3 may participate in the metabolism of the host cell, potentially utilizing the host cell's energy resources.
Identifiants
pubmed: 38112902
doi: 10.1007/s00436-023-08082-0
pii: 10.1007/s00436-023-08082-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
59Subventions
Organisme : Natural Science Foundation of Jiangsu Province
ID : BK20201229
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, Guggino WB, Nielsen S (1993) Aquaporin CHIP: The archetypal molecular water channel. Am J Physiol 93:463–476. https://doi.org/10.1152/ajprenal.1993.265.4.F463
doi: 10.1152/ajprenal.1993.265.4.F463
Becker A, Schlöder P, Steele JE, Wegener G (1996) The regulation of trehalose metabolism in insects. Experientia 52:433–439. https://doi.org/10.1007/BF01919312
doi: 10.1007/BF01919312
pubmed: 8706810
Cali A (1970) Morphogenesis in the genus Nosema. In: Proceedings of the IVth International Colloquium in Insect Pathology. College Park, MD, USA, pp 431–438
Capella-Gutiérrez S, Marcet-Houben M, Gabaldón T (2012) Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol 10:47. https://doi.org/10.1186/1741-7007-10-47
doi: 10.1186/1741-7007-10-47
pubmed: 22651672
pmcid: 3586952
Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862. https://doi.org/10.1038/35022514
doi: 10.1038/35022514
pubmed: 10972280
Corradi N, Keeling PJ (2009) Microsporidia: a journey through radical taxonomical revisions. Fungal Biol Rev 23:1–8. https://doi.org/10.1016/j.fbr.2009.05.001
doi: 10.1016/j.fbr.2009.05.001
Cuomo CA, Desjardins CA, Bakowski MA, Goldberg J, Ma AT, Becnel JJ, Didier ES, Fan L, Heiman DI, Levin JZ, Young S, Zeng Q, Troemel ER (2012) Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Res 22:2478–2488. https://doi.org/10.1101/gr.142802.112
doi: 10.1101/gr.142802.112
pubmed: 22813931
pmcid: 3514677
Curgy J, Vavara J, Vivares C (1980) Presence of ribosomal RNAs with prokaryotic properties in Microsporidia, eukaryotic organisms. Biol Cell 38:49–52
Dai W, Li N, Zhang Z, Chen G, Li X, Peng X, Zhang Y, Xu L, Shen Z (2019) Identification and localization of SAS-6 in the microsporidium Nosema bombycis. Infect Genet Evol 70:182–188. https://doi.org/10.1016/j.meegid.2018.09.016
doi: 10.1016/j.meegid.2018.09.016
pubmed: 30244093
Dolgikh VV, Tsarev AA, Timofeev SA, Zhuravlyov VS (2019) Heterologous overexpression of active hexokinases from microsporidia Nosema bombycis and Nosema ceranae confirms their ability to phosphorylate host glucose. Parasitol Res 118:1511–1518. https://doi.org/10.1007/s00436-019-06279-w
doi: 10.1007/s00436-019-06279-w
pubmed: 30863897
Edlind T, Katiyar S, Visvesvara G, Li J (1996) Evolutionary origins of microsporidia and basis for benzimidazole sensitivity: an update. J Eukaryot Microbiol 43:109S. https://doi.org/10.1111/j.1550-7408.1996.tb05029.x
doi: 10.1111/j.1550-7408.1996.tb05029.x
pubmed: 8822894
Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R-27R. https://doi.org/10.1093/glycob/cwg047
doi: 10.1093/glycob/cwg047
pubmed: 12626396
Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623. https://doi.org/10.1038/nature04546
doi: 10.1038/nature04546
pubmed: 16572163
Frison M, Parrou JL, Guillaumot D, Masquelier D, François J, Chaumont F, Batoko H (2007) The Arabidopsis thaliana trehalase is a plasma membrance-bound enzyme with extracellular activity. FEBS Lett 581:4010–4016. https://doi.org/10.1016/j.febslet.2007.07.036
doi: 10.1016/j.febslet.2007.07.036
pubmed: 17673210
Frixione E, Ruiz L, Santillán M, de Vargas LV, Tejero JM, Undeen AH (1992) Dynamics of polar filament discharge and sporoplasm expulsion by microsporidian spores. Cell Motil Cytoskel 22:38–50. https://doi.org/10.1002/cm.970220105
doi: 10.1002/cm.970220105
Frixione E, Ruiz L, Cerbón J, Undeen AH (1997) Germination of Nosema algerae (Microspora) spores: conditional inhibition by D
doi: 10.1111/j.1550-7408.1997.tb05946.x
pubmed: 9190262
Ghosh K, Cappiello CD, McBride SM, Occi JL, Cali A, Takvorian PM, McDonald TV, Weiss LM (2006) Functional characterization of a putative aquaporin from Encephalitozoon cuniculi, a microsporidia pathogenic to humans. Int J Parasitol 36:57–62. https://doi.org/10.1016/j.ijpara.2005.08.013
doi: 10.1016/j.ijpara.2005.08.013
pubmed: 16197948
Goldberg AV, Molik S, Tsaousis AD, Neumann K, Kuhnke G, Delbac F, Vivares CP, Hirt RP, Lill R, Embley TM (2008) Localization and functionality of microsporidian iron–sulphur cluster assembly proteins. Nature 452:624. https://doi.org/10.1038/nature06606
doi: 10.1038/nature06606
pubmed: 18311129
Grodzki AC, Berenstein E (2010) Antibody purification: affinity chromatography-protein A and protein G Sepharose. Methods Mol Biol 588:33–41. https://doi.org/10.1007/978-1-59745-324-0_5
doi: 10.1007/978-1-59745-324-0_5
pubmed: 20012816
Haag KL, James TY, Pombert JF, Larsson R, Schaer TMM, Refardt D, Ebert D (2014) Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites. Proc Natl Acad Sci U S A 111:15480–15485. https://doi.org/10.1073/pnas.1410442111
doi: 10.1073/pnas.1410442111
pubmed: 25313038
pmcid: 4217409
Hagan RW, Didion EM, Rosselot AE, Holmes CJ, Siler SC, Rosendale AJ, Hendershot JM, Elliot KSB, Jennings EC, Nine GA, Perez PL, Rizlallah AE, Watanabe M, Romick-Rosendale LE, Xiao Y, Rasgon JL, Benoit JB (2018) Dehydration prompts increased activity and blood feeding by mosquitoes. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-24893-z
doi: 10.1038/s41598-018-24893-z
Han B, Polonais V, Sugi T, Yakubu R, Takvorian PM, Cali A, Maier K, Long M, Levy M, Tanowitz HB, Pan G, Delbac F, Zhou Z, Weiss LM (2017) The role of microsporidian polar tube protein 4 (PTP4) in host cell infection. PLoS Pathog 13:e1006341. https://doi.org/10.1371/journal.ppat.1006341
doi: 10.1371/journal.ppat.1006341
pubmed: 28426751
pmcid: 5413088
He Q, Luo J, Xu JZ, Wang CX, Meng XZ, Pan GQ, Li T, Zhou ZY (2020) Morphology and transcriptome analysis of Nosema bombycis sporoplasm and insights into the initial infection of microsporidia. mSphere 5:e00958-19. https://doi.org/10.1128/mSphere.00958-19
doi: 10.1128/mSphere.00958-19
pubmed: 32051240
pmcid: 7021473
Huang Y, Chen J, Sun B, Zheng R, Li B, Li Z, Tan Y, Wei J, Pan G, Li C, Zhou Z (2018a) Engineered resistance to Nosema bombycis by in vitro expression of a single-chain antibody in Sf9-III cells. PLoS ONE 13:e0193065. https://doi.org/10.1371/journal.pone.0193065
doi: 10.1371/journal.pone.0193065
pubmed: 29447266
pmcid: 5814085
Huang Y, Zheng S, Mei X, Yu B, Sun B, Li B, Wei J, Chen J, Tian Li, Pan G, Zhou Z, Li C (2018b) A secretory hexokinase plays an active role in the proliferation of Nosema bombycis. Peer J 6:e5658. https://doi.org/10.7717/peerj.5658
doi: 10.7717/peerj.5658
pubmed: 30258733
pmcid: 6152459
Imura Y, Nakamura H, Arai R, Hatakeyama Y (2023) Comparison of the germination conditions of two large-spore microsporidia using potassium and sodium ion solutions. Insects 14:185. https://doi.org/10.3390/insects14020185
doi: 10.3390/insects14020185
pubmed: 36835754
pmcid: 9958894
Ishihara R, Hayashi Y (1968) Some properties of ribosomes from the sporoplasm of Nosema bombycis. J Invertebr Pathol 11:377–385. https://doi.org/10.1016/0022-2011(68)90186-9
doi: 10.1016/0022-2011(68)90186-9
Jarkass HTE, Reinke AW (2020) The ins and outs of host-microsporidia interactions during invasion, proliferation and exit. Cell Microbiol 22:e13247. https://doi.org/10.1111/cmi.13247
doi: 10.1111/cmi.13247
Jaroenlak P, Cammer M, Davydov A, Sall J, Usmani M, Liang F-X, Ekiert DC, Bhabha G (2020) 3-Dimensional organization and dynamics of the microsporidian polar tube invasion machinery. PLoS Pathog 16:e1008738. https://doi.org/10.1371/journal.ppat.1008738
doi: 10.1371/journal.ppat.1008738
pubmed: 32946515
pmcid: 7526891
Jiang L, Zhao P, Cheng T, Sun Q, Peng Z, Dang Y, Wu X, Wang G, Jin S, Lin P, Xia Q (2013) A transgenic animal with antiviral properties that might inhibit multiple stages of infection. Antiviral Res 98:171–173. https://doi.org/10.1016/j.antiviral.2013.02.015
doi: 10.1016/j.antiviral.2013.02.015
pubmed: 23466668
Katinka MD, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, Alaoui HE, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivarès CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453. https://doi.org/10.1038/35106579
doi: 10.1038/35106579
pubmed: 11719806
Keohane EM, Weiss LM (1998) Characterization and function of the microsporidian polar tube: a review. Folia Parasitol 45:117–127 (Praha)
Li X, Peng X, Chen G, Dai W, Tang X, Xu L, Shen Z (2016) Bioinformatics analysis, prokaryotic expression and polyclonal antibody preparation of trehalase gene of Nosema bombycis. Acta Sericologica Sin 2016:88–96
Li W, Wang L, Dong L (2017) Comparison of expression of human epidermal growth factor receptor 2 in breast cancer by fluorescence in situ hybridization and immunohistochemistry. Cancer Res Clinic 29:374–377
Lom J, Vavra J (1963) Fine morphology of the spore in Microsporidia. Acta Protozool 1:281–283
Nakamura H, Hatakeyama Y, Arai R, Imura Y, Takahashi M, Iwano H (2019) Germination properties of spores on entomopathogenic microsporidia, Trachipleistophora haruka isolated from Spodoptera litura. J Insect Biotechnol Sericology 88:27–30. https://doi.org/10.11416/jibs.88.2_027
doi: 10.11416/jibs.88.2_027
Paldi N, Glick E, Oliva M, Zilberberg Y, Aubin L, Pettis J, Chen Y, Evans JD (2010) Effective gene silencing in a microsporidian parasite associated with honeybee (Apis mellifera) colony declines. Appl Environ Microbiol 76:5960–5964. https://doi.org/10.1128/AEM.01067-10
doi: 10.1128/AEM.01067-10
pubmed: 20622131
pmcid: 2935068
Pan G, Xu J, Li T, Xia Q, Liu SL, Zhang G, Li S, Li C, Liu H, Yang L, Liu T, Zhang X, Wu Z, Fan W, Dang X, Xiang H, Tao M, Li Y, Hu J, Li Z, Lin L, Luo J, Geng L, Wang L, Long M, Wan Y, He N, Zhang Z, Lu C, Keeling PJ, Wang J, Xiang Z, Zhou Z (2013) Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation. BMC Genomics 14:186. https://doi.org/10.1186/1471-2164-14-186
doi: 10.1186/1471-2164-14-186
pubmed: 23496955
pmcid: 3614468
Qiu L, Wei XY, Wang SJ, Wang JJ (2020) Characterization of trehalose-6-phosphate phosphatase in trehalose biosynthesis, asexual development, stress resistance and virulence of an insect mycopathogen. Pestic Biochem Physiol 163:185–192. https://doi.org/10.1016/j.pestbp.2019.11.016
doi: 10.1016/j.pestbp.2019.11.016
pubmed: 31973856
Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2
pubmed: 25558171
pmcid: 4280562
Saleh M, Kumar G, Abdel-Baki AA, Dkhil MA, El-Matbouli M, Al-Quraishy S (2016) In vitro gene silencing of the fish microsporidian Heterosporis saurida by RNA interference. Nucleic Acid Ther 26:250–256. https://doi.org/10.1089/nat.2016.0613
doi: 10.1089/nat.2016.0613
pubmed: 27228357
pmcid: 4982949
Senderskiy IV, Timofeev SA, Seliverstova EV, Pavlova OA, Dolgikh VV (2014) Secretion of Antonospora (Paranosema) locustae proteins into infected cells suggests an active role of microsporidia in the control of host programs and metabolic processes. PLoS ONE 9:93585. https://doi.org/10.1371/journal.pone.0093585
doi: 10.1371/journal.pone.0093585
Shiflett AM, Johnson PJ (2010) Mitochondrion-related organelles in eukaryotic protists. Ann Rev Microbiol 64:409–429. https://doi.org/10.1146/annurev.micro.62.081307.162826
doi: 10.1146/annurev.micro.62.081307.162826
Shukla E, Thorat L, Bhavnani V, Pal JK, Nath BB, Gaikwad SM (2016) Molecular cloning and in silico studies of physiologically significant trehalase from Drosophila melanogaster. Int J Biol Macromol 92:282–292. https://doi.org/10.1016/j.ijbiomac.2016.06.097
doi: 10.1016/j.ijbiomac.2016.06.097
pubmed: 27377458
Tanabe Y, Watanabe MM, Sugiyama J (2002) Are microsporidia really related to fungi?: A reappraisal based on additional gene sequences from basal fungi. Mycol Res 106:1380–1391. https://doi.org/10.1017/S095375620200686X
doi: 10.1017/S095375620200686X
Tevatiya S, Kumari S, Sharma P, Rani J, Chauhan C, De TD, Pandey KC, Pande V, Dixit R (2020) Molecular and functional characterization of trehalase in the mosquito Anopheles stephensi. Front Physiol 11:575718. https://doi.org/10.3389/fphys.2020.575718
doi: 10.3389/fphys.2020.575718
pubmed: 33329025
pmcid: 7710876
Timofeev S, Tokarev Y, Dolgikh V (2020) Energy metabolism and its evolution in microsporidia and allied taxa. Parasitol Res 119:1433–1441. https://doi.org/10.1007/s00436-020-06657-9
doi: 10.1007/s00436-020-06657-9
pubmed: 32200463
Tournu H, Fiori A, Van Dijck P (2013) Relevance of trehalose in pathogenicity: some general rules, yet many exceptions. PLoS Pathog 9:e1003447. https://doi.org/10.1371/journal.ppat.1003447
doi: 10.1371/journal.ppat.1003447
pubmed: 23966851
pmcid: 3744402
Undeen AH (1990) A proposed mechanism for the germination of microsporidian (Protozoa, Microspora) spores. J Theor Biol 142:223–235. https://doi.org/10.1016/S0022-5193(05)80223-1
doi: 10.1016/S0022-5193(05)80223-1
Undeen AH, Frixione E (1990) The role of osmotic pressure in the germination of Nosema algerae spores. J Protozool 37:561–567. https://doi.org/10.1111/j.1550-7408.1990.tb01265.x
doi: 10.1111/j.1550-7408.1990.tb01265.x
pubmed: 2086785
Undeen AH, Vander Meer RK (1999) Microsporidian intrasporal sugars and their role in germination. J Invertebr Pathol 73:294–302. https://doi.org/10.1006/jipa.1998.4834
doi: 10.1006/jipa.1998.4834
pubmed: 10222184
van der Giezen M, Tovar J (2005) Degenerate mitochondria. EMBO Rep 6:525–530. https://doi.org/10.1038/sj.embor.7400440
doi: 10.1038/sj.embor.7400440
pubmed: 15940286
pmcid: 1369098
van der Giezen M, Tovar J, Clark CG (2005) Mitochondrion-derived organelles in protists and fungi. Int Rev Cytol 244:175–225. https://doi.org/10.1016/S0074-7696(05)44005-X
doi: 10.1016/S0074-7696(05)44005-X
pubmed: 16157181
Vanaporn M, Sarkar-Tyson M, Kovacs-Simon A, Ireland PM, Pumirat P, Korbsrisate S, Titball RW, Butta A (2017) Trehalase plays a role in macrophage colonization and virulence of Burkholderia pseudomallei in insect and mammalian hosts. Virulence 8:30–40. https://doi.org/10.1080/21505594.2016.1199316
doi: 10.1080/21505594.2016.1199316
pubmed: 27367830
Vandermeer JW, Gochnauer TA (1971) Trehalase activity associated with spores of Nosema apis. J Invertebr Pathol 17:38–41. https://doi.org/10.1016/0022-2011(71)90122-4
doi: 10.1016/0022-2011(71)90122-4
Vávra J (1976) The development of microsporidia. In: Bulla LA, Cheng TC (eds) Comparative pathobiology. Plenum Press, New York, pp 87–110
Verkman AS, Mitra AK (2000) Structure and function of aquaporin water channels. Am J Physiol Renal Physiol 278:F13–F28. https://doi.org/10.1152/ajprenal.2000.278.1.F13
doi: 10.1152/ajprenal.2000.278.1.F13
pubmed: 10644652
Vivarès CP, Gouy M, Thomarat F, Méténier G (2002) Functional and evolutionary analysis of a eukaryotic parasitic genome. Curr Opin Microbiol 5:499–505. https://doi.org/10.1016/s1369-5274(02)00356-9
doi: 10.1016/s1369-5274(02)00356-9
pubmed: 12354558
Vossbrinck CR, Maddox JV, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326:411–414. https://doi.org/10.1038/326411a0
doi: 10.1038/326411a0
pubmed: 3550472
Walker JM (2009) The protein protocols handbook, 3rd edn. Springer Verlag, New York
doi: 10.1007/978-1-59745-198-7
Wingler A (2002) The function of trehalose biosynthesis in plants. Phytochemistry 60:437–440. https://doi.org/10.1016/s0031-9422(02)00137-1
doi: 10.1016/s0031-9422(02)00137-1
pubmed: 12052507
Yang BX, Ma TH, Dong JY, Verkman AS (2000) Partial correction of the urinary concentration defect in aquaporin-1 null mice by adenovirus-mediated gene delivery. Hum Gene Ther 11:567–575. https://doi.org/10.1089/10430340050015752
doi: 10.1089/10430340050015752
pubmed: 10724035
Zhang Y, Xue R, Cao G, Meng X, Zhu Y, Pan Z, Gong C (2014) Nonvirus encoded proteins could be embedded into Bombyx mori cypovirus polyhedra. Mol Biol Rep 41:2657–2666. https://doi.org/10.1007/s11033-014-3124-7
doi: 10.1007/s11033-014-3124-7
pubmed: 24469718
Zhang Y, Cao G, Zhu L, Chen F, Zar MS, Wang S, Hu X, Wei Y, Xue R, Gong C (2017) Integrin beta and receptor for activated protein kinase C are involved in the cell entry of Bombyx mori cypovirus. 101:3703-3716. https://doi.org/10.1007/s00253-017-8158-z
Zheng S, Huang Y, Huang H, Yu B, Zhou N, Wei J, Pan G, Li C, Zhou Z (2021) The role of NbTMP1, a surface protein of sporoplasm, in Nosema bombycis infection. Parasit Vectors 14:81. https://doi.org/10.1186/s13071-021-04595-8
doi: 10.1186/s13071-021-04595-8
pubmed: 33494800
pmcid: 7836179