High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology with Cellos.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
18 Dec 2023
Historique:
received: 15 02 2023
accepted: 01 12 2023
medline: 20 12 2023
pubmed: 20 12 2023
entrez: 19 12 2023
Statut: epublish

Résumé

Three-dimensional (3D) organoid cultures are flexible systems to interrogate cellular growth, morphology, multicellular spatial architecture, and cellular interactions in response to treatment. However, computational methods for analysis of 3D organoids with sufficiently high-throughput and cellular resolution are needed. Here we report Cellos, an accurate, high-throughput pipeline for 3D organoid segmentation using classical algorithms and nuclear segmentation using a trained Stardist-3D convolutional neural network. To evaluate Cellos, we analyze ~100,000 organoids with ~2.35 million cells from multiple treatment experiments. Cellos segments dye-stained or fluorescently-labeled nuclei and accurately distinguishes distinct labeled cell populations within organoids. Cellos can recapitulate traditional luminescence-based drug response of cells with complex drug sensitivities, while also quantifying changes in organoid and nuclear morphologies caused by treatment as well as cell-cell spatial relationships that reflect ecological affinity. Cellos provides powerful tools to perform high-throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.

Identifiants

pubmed: 38114489
doi: 10.1038/s41467-023-44162-6
pii: 10.1038/s41467-023-44162-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8406

Informations de copyright

© 2023. The Author(s).

Références

Yoshii, Y. et al. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment. Biomaterials 51, 278–289 (2015).
doi: 10.1016/j.biomaterials.2015.02.008 pubmed: 25771018
Costa, E. C. et al. 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol. Adv. 34, 1427–1441 (2016).
doi: 10.1016/j.biotechadv.2016.11.002 pubmed: 27845258
Jensen, C. & Teng, Y. Is it time to start transitioning from 2D to 3D cell culture? Front. Mol. Biosci. 7, 33 (2020).
doi: 10.3389/fmolb.2020.00033 pubmed: 32211418 pmcid: 7067892
Langhans, S. A. Using 3D in vitro cell culture models in anti-cancer drug discovery. Expert Opin. Drug Dis. 16, 1–10 (2021).
doi: 10.1080/17460441.2021.1912731
Ravi, M., Paramesh, V., Kaviya, S. R., Anuradha, E. & Solomon, F. D. P. 3D cell culture systems: advantages and applications. J. Cell Physiol. 230, 16–26 (2015).
doi: 10.1002/jcp.24683 pubmed: 24912145
Kessel, S. et al. High-throughput 3D tumor spheroid screening method for cancer drug discovery using celigo image cytometry. SLAS Technol. 22, 454–465 (2016).
doi: 10.1177/2211068216652846 pubmed: 27272155
Li, L., Zhou, Q., Voss, T. C., Quick, K. L. & Labarbera, D. V. High throughput imaging: focusing in on drug discovery in 3D. Methods 96, 97–102 (2016).
doi: 10.1016/j.ymeth.2015.11.013 pubmed: 26608110
Kondo, J. et al. High‐throughput screening in colorectal cancer tissue‐originated spheroids. Cancer Sci. 110, 345–355 (2019).
doi: 10.1111/cas.13843 pubmed: 30343529
Kessel, S. L. & Chan, L. L.-Y. A high-throughput image cytometry method for the formation, morphometric, and viability analysis of drug-treated mammospheres. Slas Discov. 25, 723–733 (2020).
doi: 10.1177/2472555220922817 pubmed: 32396489
Hasnain, Z. et al. OrgDyn: feature-and model-based characterization of spatial and temporal organoid dynamics. Bioinformatics 36, 3292–3294 (2020).
doi: 10.1093/bioinformatics/btaa096 pubmed: 32091578 pmcid: 7214016
Borten, M. A., Bajikar, S. S., Sasaki, N., Clevers, H. & Janes, K. A. Automated brightfield morphometry of 3D organoid populations by OrganoSeg. Sci. Rep. 8, 5319 (2018).
doi: 10.1038/s41598-017-18815-8 pubmed: 29593296 pmcid: 5871765
Gritti, N. et al. MOrgAna: accessible quantitative analysis of organoids with machine learning. Development 148, dev199611 (2021).
doi: 10.1242/dev.199611 pubmed: 34494114 pmcid: 8451065
Powell, R. T. et al. deepOrganoid: a brightfield cell viability model for screening matrix-embedded organoids. SLAS Discov. 27, 175–184 (2022).
doi: 10.1016/j.slasd.2022.03.004 pubmed: 35314378
Gertych, A., Ma, Z., Tajbakhsh, J., Velasquez-Vacca, A. & Knudsen, B. S. Rapid 3-D delineation of cell nuclei for high-content screening platforms. Comput. Biol. Med. 69, 328–338 (2016).
doi: 10.1016/j.compbiomed.2015.04.025 pubmed: 25982066
Boutin, M. E. et al. A high-throughput imaging and nuclear segmentation analysis protocol for cleared 3D culture models. Sci. Rep. 8, 11135 (2018).
doi: 10.1038/s41598-018-29169-0 pubmed: 30042482 pmcid: 6057966
Beghin, A. et al. Automated high-speed 3D imaging of organoid cultures with multi-scale phenotypic quantification. Nat. Methods 19, 881–892 (2022).
doi: 10.1038/s41592-022-01508-0 pubmed: 35697835
Zhang, L. et al. Quantifying the drug response of patient-derived organoid clusters by aggregated morphological indicators with multi-parameters based on optical coherence tomography. Biomed. Opt. Express 14, 1703–1717 (2023).
doi: 10.1364/BOE.486666 pubmed: 37078050 pmcid: 10110317
Kim, H. et al. High-resolution deconstruction of evolution induced by chemotherapy treatments in breast cancer xenografts. Sci. Rep. 8, 17937 (2018).
doi: 10.1038/s41598-018-36184-8 pubmed: 30560892 pmcid: 6298990
Zack, G. W., Rogers, W. E. & Latt, S. A. Automatic measurement of sister chromatid exchange frequency. J. Histochem. Cytochem. 25, 741–753 (1977).
doi: 10.1177/25.7.70454 pubmed: 70454
van der Walt, S. et al. scikit-image: Image processing in Python. PeerJ 2, e453 (2014).
doi: 10.7717/peerj.453 pubmed: 25024921 pmcid: 4081273
Weigert, M., Schmidt, U., Haase, R., Sugawara, K. & Myers, G. Star-convex polyhedra for 3D object detection and segmentation in microscopy. 2020 IEEE Winter Conf. Appl. Comput. Vis. WACV 00, 3655–3662 (2020).
doi: 10.1109/WACV45572.2020.9093435
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In CVPR (2016).
Svoboda D., Kozubkek M. & Stejskal, S. Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry. Cytometry Part A, (John Wiley & Sons, Inc., 2009) 75A, 6, pp. 494–509, 16 pages. ISSN 1552-4922. From Broad Bioimage Benchmark Collection https://bbbc.broadinstitute.org/BBBC024 .
Tasnadi, E. A. et al. 3D-Cell-Annotator: an open-source active surface tool for single-cell segmentation in 3D microscopy images. Bioinformatics 36, 2948–2949 (2020).
doi: 10.1093/bioinformatics/btaa029 pubmed: 31950986 pmcid: 7203751
Kim, S. et al. Comparison of cell and organoid-level analysis of patient-derived 3D organoids to evaluate tumor cell growth dynamics and drug response. SLAS Discov. 25, 744–754 (2020).
doi: 10.1177/2472555220915827 pubmed: 32349587 pmcid: 7372585
Matthews, J. M. et al. OrganoID: a versatile deep learning platform for tracking and analysis of single-organoid dynamics. PLoS Comput. Biol. 18, e1010584 (2022).
doi: 10.1371/journal.pcbi.1010584 pubmed: 36350878 pmcid: 9645660
Spiller, E. R. et al. Imaging-based machine learning analysis of patient-derived tumor organoid drug response. Front. Oncol. 11, 771173 (2021).
doi: 10.3389/fonc.2021.771173 pubmed: 34993134 pmcid: 8724556
Mandelkow, R. et al. Detection and quantification of nuclear morphology changes in apoptotic cells by fluorescence microscopy and subsequent analysis of visualized fluorescent signals. Anticancer Res. 37, 2239–2244 (2017).
doi: 10.21873/anticanres.11560 pubmed: 28476788
Filippi-Chiela, E. C. et al. Nuclear morphometric analysis (NMA): screening of senescence, apoptosis and nuclear irregularities. PLoS ONE 7, e42522 (2012).
doi: 10.1371/journal.pone.0042522 pubmed: 22905142 pmcid: 3414464
Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).
doi: 10.1016/j.cell.2010.02.027 pubmed: 20371346 pmcid: 2851638
Long, F., Peng, H., Liu, X., Kim, S. K. & Myers, E. A 3D digital atlas of C. elegans and its application to single-cell analyses. Nat. Methods 6, 667–672 (2009).
doi: 10.1038/nmeth.1366 pubmed: 19684595 pmcid: 2882208
Schmitz, A., Fischer, S. C., Mattheyer, C., Pampaloni, F. & Stelzer, E. H. K. Multiscale image analysis reveals structural heterogeneity of the cell microenvironment in homotypic spheroids. Sci. Rep. 7, 43693 (2017).
doi: 10.1038/srep43693 pubmed: 28255161 pmcid: 5334646
Miles, A. et al. zarr-developers/zarr-python: v2.16.1 Zenodo. https://doi.org/10.5281/zenodo.8263439 (2023).
Roma-Rodrigues, C., Mendes, R., Baptista, P. V. & Fernandes, A. R. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci. 20, 840 (2019).
doi: 10.3390/ijms20040840 pubmed: 30781344 pmcid: 6413095
Zhong, S., Jeong, J. H., Chen, Z., Chen, Z. & Luo, J. L. Targeting tumor microenvironment by small-molecule inhibitors. Transl. Oncol. 13, 57–69 (2020).
doi: 10.1016/j.tranon.2019.10.001 pubmed: 31785429
Bejarano, L., Jordāo, M. J. & Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11, 933–959 (2021).
doi: 10.1158/2159-8290.CD-20-1808 pubmed: 33811125
Barroso, M. et al. A path to translation: How 3D patient tumor avatars enable next generation precision oncology. Cancer Cell 40, 1448–1453 (2022).
doi: 10.1016/j.ccell.2022.09.017 pubmed: 36270276 pmcid: 10576652
Xie, X. et al. Deep convolutional neural network-based classification of cancer cells on cytological pleural effusion images. Mod. Pathol. 35, 609–614 (2022).
doi: 10.1038/s41379-021-00987-4 pubmed: 35013527 pmcid: 9042694
Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun Acm 60, 84–90 (2017).
doi: 10.1145/3065386
Liu, X. et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. The Am. J. Pathol. 180, 599–607 (2012).
doi: 10.1016/j.ajpath.2011.10.036 pubmed: 22189618
Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).
doi: 10.1016/S1046-2023(03)00032-X pubmed: 12798140
Mukashyaka, P. et al. High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology with Cellos data sets. figshare https://figshare.com/articles/dataset/cellos_data_zip/21992234 (2023).
Arzt, M. et al. LABKIT: labeling and segmentation toolkit for big image data. Front. Comput. Sci. 4, 10 (2022).
Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part II 11 (pp. 265-273). (Springer International Publishing,2018).
Mukashyaka, P. et al. High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology with Cellos source code. Zenodo https://doi.org/10.5281/zenodo.10065286 (2023).
napari contributors. napari: a multi-dimensional image viewer for python. Zenodo https://doi.org/10.5281/zenodo.3555620 (2019).

Auteurs

Patience Mukashyaka (P)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA.

Pooja Kumar (P)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

David J Mellert (DJ)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

Shadae Nicholas (S)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

Javad Noorbakhsh (J)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

Mattia Brugiolo (M)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

Elise T Courtois (ET)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

Olga Anczukow (O)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA.

Edison T Liu (ET)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. ed.liu@jax.org.

Jeffrey H Chuang (JH)

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. jeff.chuang@jax.org.
Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA. jeff.chuang@jax.org.

Classifications MeSH