Effects of donor-specific microvascular anatomy on hemodynamic perfusion in human choriocapillaris.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
19 Dec 2023
19 Dec 2023
Historique:
received:
16
05
2023
accepted:
28
11
2023
medline:
20
12
2023
pubmed:
20
12
2023
entrez:
19
12
2023
Statut:
epublish
Résumé
Evidence from histopathology and clinical imaging suggest that choroidal anatomy and hemodynamic perfusion are among the earliest changes in retinal diseases such as age-related macular degeneration (AMD). However, how inner choroidal anatomy affects hemodynamic perfusion is not well understood. Therefore, we sought to understand the influences of choroidal microvascular architecture on the spatial distribution of hemodynamic parameters in choriocapillaris from human donor eyes using image-based computational hemodynamic (ICH) simulations. We subjected image-based inner choroid reconstructions from eight human donor eyes to ICH simulation using a kinetic-based volumetric lattice Boltzmann method to compute hemodynamic distributions of velocity, pressure, and endothelial shear stress. Here, we demonstrate that anatomic parameters, including arteriolar and venular arrangements and intercapillary pillar density and distribution exert profound influences on inner choroidal hemodynamic characteristics. Reductions in capillary, arteriolar, and venular density not only reduce the overall blood velocity within choriocapillaris, but also substantially increase its spatial heterogeneity. These first-ever findings improve understanding of how choroidal anatomy affects hemodynamics and may contribute to pathogenesis of retinal diseases such as AMD.
Identifiants
pubmed: 38114564
doi: 10.1038/s41598-023-48631-2
pii: 10.1038/s41598-023-48631-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22666Subventions
Organisme : NIH HHS
ID : R01EY031039
Pays : United States
Informations de copyright
© 2023. The Author(s).
Références
Nickla, D. L. & Wallman, J. The multifunctional choroid. Prog. Retin. Eye Res. 29, 144–168 (2010).
pubmed: 20044062
doi: 10.1016/j.preteyeres.2009.12.002
Xu, H. et al. Improved leukocyte tracking in mouse retinal and choroidal circulation. Exp. Eye Res. 74, 403–410 (2002).
pubmed: 12014921
doi: 10.1006/exer.2001.1134
Omri, S. et al. Microglia/macrophages migrate through retinal epithelium barrier by a transcellular route in diabetic retinopathy: role of PKC[Formula: see text] in the goto kakizaki rat model. Am. J. Pathol. 179, 942–953 (2011).
pubmed: 21712024
pmcid: 3157258
doi: 10.1016/j.ajpath.2011.04.018
Penfold, P., Killingsworth, M. & Sarks, S. Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch. Clin. Exp. Ophthalmol. 223, 69–76 (1985).
pubmed: 2408968
doi: 10.1007/BF02150948
Sakurai, E., Anand, A., Ambati, B. K., van Rooijen, N. & Ambati, J. Macrophage depletion inhibits experimental choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 44, 3578–3585 (2003).
doi: 10.1167/iovs.03-0097
Sakurai, E. et al. Targeted disruption of the CD18 or ICAM-1 gene inhibits choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 44, 2743–2749 (2003).
doi: 10.1167/iovs.02-1246
Ogura, S. et al. A role for mast cells in geographic atrophy. FASEB J. 34, 10117–10131 (2020).
pubmed: 32525594
doi: 10.1096/fj.202000807R
McLeod, D. S. et al. Relationship between rpe and choriocapillaris in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 50, 4982–4991 (2009).
doi: 10.1167/iovs.09-3639
Sohn, E. H. et al. Choriocapillaris degeneration in geographic atrophy. Am. J. Pathol. 189, 1473–1480 (2019).
pubmed: 31051169
pmcid: 6616998
doi: 10.1016/j.ajpath.2019.04.005
Seddon, J. M. et al. Histopathological insights into choroidal vascular loss in clinically documented cases of age-related macular degeneration. JAMA Ophthalmol. 134, 1272–1280 (2016).
pubmed: 27657855
pmcid: 6014730
doi: 10.1001/jamaophthalmol.2016.3519
Biesemeier, A., Taubitz, T., Julien, S., Yoeruek, E. & Schraermeyer, U. Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration. Neurobiol. Aging 35, 2562–2573 (2014).
pubmed: 24925811
doi: 10.1016/j.neurobiolaging.2014.05.003
Metelitsina, T. I. et al. Foveolar choroidal circulation and choroidal neovascularization in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 49, 358–363 (2008).
doi: 10.1167/iovs.07-0526
Xu, W. et al. Association of risk factors for choroidal neovascularization in age-related macular degeneration with decreased foveolar choroidal circulation. Am. J. Ophthalmol. 150, 40–47 (2010).
pubmed: 20493466
pmcid: 2900527
doi: 10.1016/j.ajo.2010.01.041
Grunwald, J. E. et al. Foveolar choroidal blood flow in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 39, 385–390 (1998).
Nassisi, M. et al. Choriocapillaris impairment around the atrophic lesions in patients with geographic atrophy: A swept-source optical coherence tomography angiography study. Br. J. Ophthalmol. 103, 911–917 (2019).
pubmed: 30131381
doi: 10.1136/bjophthalmol-2018-312643
Alagorie, A. R., Verma, A., Nassisi, M. & Sadda, S. R. Quantitative assessment of choriocapillaris flow deficits in eyes with advanced age-related macular degeneration versus healthy eyes. Am. J. Ophthalmol. 205, 132–139 (2019).
pubmed: 31078531
doi: 10.1016/j.ajo.2019.04.037
Nassisi, M., Baghdasaryan, E., Borrelli, E., Ip, M. & Sadda, S. R. Choriocapillaris flow impairment surrounding geographic atrophy correlates with disease progression. PLoS ONE 14, e0212563 (2019).
pubmed: 30794627
pmcid: 6386298
doi: 10.1371/journal.pone.0212563
Thulliez, M. et al. Correlations between choriocapillaris flow deficits around geographic atrophy and enlargement rates based on swept-source OCT imaging. Ophthalmol. Retina 3, 478–488 (2019).
pubmed: 31174669
doi: 10.1016/j.oret.2019.01.024
Nassisi, M., Tepelus, T., Nittala, M. G. & Sadda, S. R. Choriocapillaris flow impairment predicts the development and enlargement of drusen. Graefes Arch. Clin. Exp. Ophthalmol. 257, 2079–2085 (2019).
pubmed: 31263948
doi: 10.1007/s00417-019-04403-1
Boltz, A. et al. Choroidal blood flow and progression of age-related macular degeneration in the fellow eye in patients with unilateral choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 51, 4220–4225 (2010).
doi: 10.1167/iovs.09-4968
Spaide, R. F. Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am. J. Ophthalmol. 170, 58–67 (2016).
pubmed: 27496785
doi: 10.1016/j.ajo.2016.07.023
Hecht, A. et al. Relationship between morphological and vascular alterations in geographic atrophy using a multimodal imaging approach. Acta Ophthalmol. 98, e700–e708 (2020).
pubmed: 32067383
doi: 10.1111/aos.14352
Zouache, M., Eames, I. & Luthert, P. Blood flow in the choriocapillaris. J. Fluid Mech. 774, 37–66 (2015).
doi: 10.1017/jfm.2015.243
Flower, R. et al. Theoretical investigation of the role of choriocapillaris blood flow in treatment of subfoveal choroidal neovascularization associated with age-related macular degeneration. Am. J. Ophthalmol. 132, 85–93 (2001).
pubmed: 11438059
doi: 10.1016/S0002-9394(01)00872-8
Zouache, M., Eames, I., Klettner, C. & Luthert, P. Form, shape and function: Segmented blood flow in the choriocapillaris. Sci. Rep. 6, 1–13 (2016).
doi: 10.1038/srep35754
Lee, J. E. et al. Functional end-arterial circulation of the choroid assessed by using fat embolism and electric circuit simulation. Sci. Rep. 7, 1–9 (2017).
Hayreh, S. S. Segmental nature of the choroidal vasculature. Br. J. Ophthalmol. 59, 631–648 (1975).
pubmed: 812547
pmcid: 1017426
doi: 10.1136/bjo.59.11.631
Hayreh, S. S. Recent advances in fluorescein fundus angiography. Br. J. Ophthalmol. 58, 391 (1974).
pubmed: 4606983
pmcid: 1214785
doi: 10.1136/bjo.58.4.391
Edwards, M. & Lutty, G. A. Bruch’s membrane and the choroid in age-related macular degeneration. Age Relat. Mac. Degen. 1256, 89–119 (2021).
doi: 10.1007/978-3-030-66014-7_4
Yu, H. et al. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries. Phys. Rev. E 89, 063304 (2014).
doi: 10.1103/PhysRevE.89.063304
An, S., Yu, H. W., Wang, Z., Kapadia, B. & Yao, J. Unified mesoscopic modeling and GPU-accelerated computational method for image-based pore-scale porous media flows. Int. J. Heat Mass Transf. 115, 1192–1202 (2017).
doi: 10.1016/j.ijheatmasstransfer.2017.08.099
Zhang, X. et al. Volumetric lattice Boltzmann method for wall stresses of image-based pulsatile flows. Sci. Rep. 12, 1–15 (2022).
An, S., Zhan, Y., Yao, J., Yu, H. W. & Niasar, V. A greyscale volumetric lattice Boltzmann method for upscaling pore-scale two-phase flow. Adv. Water Resour. 144, 103711 (2020).
doi: 10.1016/j.advwatres.2020.103711
Chen, R., Shao, J.-G., Zheng, Y.-Q., Yu, H.-D. & Xu, Y.-S. Lattice Boltzmann simulation for complex flow in a solar wall. Commun. Theor. Phys. 59, 370 (2013).
doi: 10.1088/0253-6102/59/3/21
Chen, R., Yu, H., Zhu, L., Patil, R. M. & Lee, T. Spatial and temporal scaling of unequal microbubble coalescence. AIChE J. 63, 1441–1450 (2017).
doi: 10.1002/aic.15504
Chen, R., Yu, H. W., Zeng, J. & Zhu, L. General power-law temporal scaling for unequal-size microbubble coalescence. Phys. Rev. E 101, 023106 (2020).
pubmed: 32168553
doi: 10.1103/PhysRevE.101.023106
Yu, H. & Girimaji, S. S. Near-field turbulent simulations of rectangular jets using lattice Boltzmann method. Phys. Fluids 17, 125106 (2005).
doi: 10.1063/1.2140021
Yu, H., Girimaji, S. S. & Luo, L.-S. DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method. J. Comput. Phys. 209, 599–616 (2005).
doi: 10.1016/j.jcp.2005.03.022
Gelfand, B. D. & Ambati, J. A revised hemodynamic theory of age-related macular degeneration. Trends Mol. Med. 22, 656–670 (2016).
pubmed: 27423265
pmcid: 4969140
doi: 10.1016/j.molmed.2016.06.009
Kiryu, J. et al. Noninvasive visualization of the choriocapillaris and its dynamic filling. Investig. Ophthalmol. Vis. Sci. 35, 3724–3731 (1994).
Takasu, I., Shiraga, F., Okanouchi, T., Tsuchida, Y. & Ohtsuki, H. Evaluation of leukocyte dynamics in choroidal circulation with indocyanine green-stained leukocytes. Investig. Ophthalmol. Vis. Sci. 41, 2844–2848 (2000).
Flower, R. W., Fryczkowski, A. W. & McLeod, D. S. Variability in choriocapillaris blood flow distribution. Investig. Ophthalmol. Vis. Sci. 36, 1247–1258 (1995).
Santamaría, R., González-Álvarez, M., Delgado, R., Esteban, S. & Arroyo, A. G. Remodeling of the microvasculature: May the blood flow be with you. Front. Physiol. 11, 586852 (2020).
pubmed: 33178049
pmcid: 7593767
doi: 10.3389/fphys.2020.586852
Bernabeu, M. O. et al. Computer simulations reveal complex distribution of haemodynamic forces in a mouse retina model of angiogenesis. J. R. Soc. Interface 11, 20140543 (2014).
pubmed: 25079871
pmcid: 4233731
doi: 10.1098/rsif.2014.0543
Ganesan, P., He, S. & Xu, H. Development of an image-based network model of retinal vasculature. Ann. Biomed. Eng. 38, 1566–1585 (2010).
pubmed: 20135352
doi: 10.1007/s10439-010-9942-4
Lutty, G. A. Diabetic choroidopathy. Vis. Res. 139, 161–167 (2017).
pubmed: 28535994
doi: 10.1016/j.visres.2017.04.011
Lutty, G. A., McLeod, D. S., Bhutto, I. A., Edwards, M. M. & Seddon, J. M. Choriocapillaris dropout in early age-related macular degeneration. Exp. Eye Res. 192, 107939 (2020).
pubmed: 31987759
pmcid: 7216757
doi: 10.1016/j.exer.2020.107939
Sohn, E. H. et al. Loss of CD34 expression in aging human choriocapillaris endothelial cells. PLoS ONE 9, e86538 (2014).
pubmed: 24466138
pmcid: 3897719
doi: 10.1371/journal.pone.0086538
Mullins, R. F., Johnson, M. N., Faidley, E. A., Skeie, J. M. & Huang, J. Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 52, 1606–1612 (2011).
doi: 10.1167/iovs.10-6476
McLeod, D. S. et al. Quantifying changes in RPE and choroidal vasculature in eyes with age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 43, 1986–1993 (2002).
Ramrattan, R. S. et al. Morphometric analysis of bruch’s membrane, the choriocapillaris, and the choroid in aging. Investig. Ophthalmol. Vis. Sci. 35, 2857–2864 (1994).
Cheung, C. M. G., Teo, K. Y. C. & Spaide, R. F. Pulsatile filling of dilated choroidal vessels in macular watershed zones. Retina 41, 2370–2377 (2021).
doi: 10.1097/IAE.0000000000003195
Yoneya, S. & Tso, M. O. Angioarchitecture of the human choroid. Arch. Ophthalmol. 105, 681–687 (1987).
pubmed: 3619746
doi: 10.1001/archopht.1987.01060050099046
An, S., Yu, H. W. & Yao, J. GPU-accelerated volumetric lattice Boltzmann method for porous media flow. J. Petrol. Sci. Eng. 156, 546–552 (2017).
doi: 10.1016/j.petrol.2017.06.031
Wang, Z., Zhao, Y., Sawchuck, A. P., Dalsing, M. C. & Yu, H. W. GPU acceleration of volumetric lattice Boltzmann method for patient-specific computational hemodynamics. Comput. Fluids 115, 192–200 (2015).
doi: 10.1016/j.compfluid.2015.04.004