Energy-absorption analyses of honeycomb-structured Al-alloy and nylon sheets using modified split Hopkinson pressure bar.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
18 Dec 2023
18 Dec 2023
Historique:
received:
03
08
2023
accepted:
07
12
2023
medline:
20
12
2023
pubmed:
20
12
2023
entrez:
19
12
2023
Statut:
epublish
Résumé
Thin cylindrical honeycomb-structured aluminum alloy and mono-cast (MC) nylon were studied as superior energy-absorbing materials compared to metallic foams. Their energy-absorbing performance was assessed using a modified split Hopkinson pressure bar (SHPB). Key parameters included maximum impact acceleration (a
Identifiants
pubmed: 38114664
doi: 10.1038/s41598-023-49386-6
pii: 10.1038/s41598-023-49386-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22597Subventions
Organisme : Agency for Defense Development of the Korean Government
ID : UI2200321D
Informations de copyright
© 2023. The Author(s).
Références
Santosa, S. P., Arifurrahman, F., Izzudin, M. H., Widagdo, D. & Gunawan, L. Response analysis of blast impact loading of metal-foam sandwich panels. Procedia Eng. 173, 495–502 (2017).
doi: 10.1016/j.proeng.2016.12.073
Dukhan, N. Metal Foams: Fundamentals and Applications (DEStech Publications Inc, 2013).
Dinesh, B. V. S. & Bhattacharya, A. Comparison of energy absorption characteristics of PCM-metal foam systems with different pore size distributions. J. Energy Storage 28, 101190 (2020).
doi: 10.1016/j.est.2019.101190
Tabrizi, Y. A. & Rabiei, A. Use of composite metal foam for improving absorption of collision forces. Proc. Mater. Sci. 4, 377–382 (2014).
doi: 10.1016/j.mspro.2014.07.577
Opara, L. K., Vesenjak, M., Duarte, I., Ren, Z. & Domazet, Z. Infrared thermography as a method for energy absorption evaluation of metal foams. Mater. Today Proc. 3, 1025–1030 (2016).
doi: 10.1016/j.matpr.2016.03.041
Liu, H., Cao, Z. K., Luo, H. J., Shi, J. C. & Yao, G. C. Performance of closed-cell aluminum foams subjected to impact loading. Mater. Sci. Eng. A 570, 27–31 (2013).
doi: 10.1016/j.msea.2012.11.094
Kumar, R. et al. Lightweight open cell aluminum foam for superior mechanical and electromagnetic interference shielding properties. Mater. Chem. Phys. 240, 122274 (2020).
doi: 10.1016/j.matchemphys.2019.122274
Simone, A. E. & Gibson, L. J. Aluminum foams produced by liquid-state processes. Acta Mater. 46, 3109–3123 (1998).
doi: 10.1016/S1359-6454(98)00017-2
Garcia-Moreno, Y. F. Commercial applications of metal foams: Their properties and production. Materials 9(2), 85 (2016).
doi: 10.3390/ma9020085
pubmed: 28787887
pmcid: 5456484
Haq, A. U. & Reddy, N. S. K. A brief review on various high energy absorbing materials. Mater. Today Proc. 38, 3198–3204 (2021).
doi: 10.1016/j.matpr.2020.09.648
Sharma, S. S., Yadav, S., Joshi, A., Goyal, A. & Khatri, R. Application of metallic foam in vehicle structure: A review. Mater. Today Proc. 63, 347–353 (2022).
doi: 10.1016/j.matpr.2022.03.201
Kim, S. et al. Energy-absorption analyses of grooved Al-sheet stacks using modificed split Hopkinson pressure bar. Mater. Sci. Eng. A 886, 145721 (2023).
doi: 10.1016/j.msea.2023.145721
L.L.C. Matweb, Matweb Material Property Data. http://www.matweb.com/ . Accessed February 2023.
Zhao, H., Gary, G. & Klepaczko, J. R. On the use of a viscoelastic split Hopkinson pressure bar. Int. J. Impact Eng. 19, 319–330 (1997).
doi: 10.1016/S0734-743X(96)00038-3
Iwamoto, T. & Yokoyama, T. Effects of radial inertia and end friction in specimen geometry in split Hopkinson pressure bar tests: A computational study. Mech. Mater. 51, 97–109 (2012).
doi: 10.1016/j.mechmat.2012.04.007
Feng, S., Zhou, Y. & Li, Q. M. Damage behavior and energy absorption characteristics of foamed concrete under dynamic load. Constr. Build. Mater. 357, 129340 (2022).
doi: 10.1016/j.conbuildmat.2022.129340
Xu, X., Han, J., Cong, D. & Zheng, S. High-power impact experimental generation analysis using hydraulic impact simulation tester. In 2019 IEEE 3rd ITNEC, Chengdu, China, 2098–2102 (2019).
Gan, L., Zhang, H., Zhou, C. & Liu, L. Impact load buffering method based on stress wave attenuation principle. Int. J. Appl. Mech. 11(2), 1950019 (2019).
doi: 10.1142/S1758825119500194
Chen, R., Sui, L., Liu, Q. & Qiu, Q. Research on the cushioning effect of protective materials under high impact. J. Phys. Conf. Ser. 1635, 012091 (2020).
doi: 10.1088/1742-6596/1635/1/012091
Davies, G. J. & Zhen, S. Metallic foams: Their production, properties and applications. J. Mater. Sci. 18, 1899–1911 (1983).
doi: 10.1007/BF00554981
Kim, S. et al. Analyses of impact energy-absorbing performance of open- and closed-cell Al foams using modified split Hopkinson pressure bar. J. Alloys Compd. 965, 171349 (2023).
doi: 10.1016/j.jallcom.2023.171349
Siengchin, S. A review on lightweight materials for defense applications: Present and future developments. Def. Technol. 24, 1–17 (2023).
doi: 10.1016/j.dt.2023.02.025
Malik, A., Nazeer, F. & Wang, Y. A prospective way to achieve ballistic impact resistance of lightweight magnesium alloys. Metals 12(2), 241 (2022).
doi: 10.3390/met12020241
Gioux, G., McCormack, T. M. & Gibson, L. J. Failure of aluminum foams under multiaxial loads. Int. J. Mech. Sci. 42, 1097–1117 (2000).
doi: 10.1016/S0020-7403(99)00043-0
Bendarma, A. et al. Dynamic behavior of aluminum alloy Aw 5005 undergoing interfacial friction and specimen configuration in split Hopkinson pressure bar system at high strain rate and temperatures. Materials 13(20), 4614 (2020).
doi: 10.3390/ma13204614
pubmed: 33081228
pmcid: 7602877
Lifshitz, J. M. & Leber, H. Data processing in the split Hopkinson pressure bar tests. Int. J. Impact Eng. 15, 723–733 (1994).
doi: 10.1016/0734-743X(94)90011-9
Kajberg, J. & Sundin, K.-G. Material characterisation using high-temperature split Hopkinson pressure bar. J. Mater. Process. Technol. 213, 522–531 (2013).
doi: 10.1016/j.jmatprotec.2012.11.008
Jo, M. C. et al. Role of retained austenite on adiabatic shear band formation during high strain rate loading in high-strength bainitic steels. Mater. Sci. Eng. A 778, 139118 (2020).
doi: 10.1016/j.msea.2020.139118
Kim, S. et al. Suppression of adiabatic shear band formation by martensitic transformation of retained austenite during split Hopkinson pressure bar test for a high-strength bainitic steel. Mater. Sci. Eng. A 814, 141127 (2021).
doi: 10.1016/j.msea.2021.141127
Wang, C. T. et al. Strain rate effects on the mechanical properties of an AlCoCrFeAi high-entropy alloy. Met. Mater. Int. 27, 2310–2318 (2021).
doi: 10.1007/s12540-020-00920-5
Kim, S. et al. Correlation of dynamic compressive properties, adiabatic shear banding, and ballistic performance of high-strength 2139 and 7056 aluminum alloys. Mater. Sci. Eng. A 804, 140757 (2021).
doi: 10.1016/j.msea.2021.140757