Energy-absorption analyses of honeycomb-structured Al-alloy and nylon sheets using modified split Hopkinson pressure bar.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
18 Dec 2023
Historique:
received: 03 08 2023
accepted: 07 12 2023
medline: 20 12 2023
pubmed: 20 12 2023
entrez: 19 12 2023
Statut: epublish

Résumé

Thin cylindrical honeycomb-structured aluminum alloy and mono-cast (MC) nylon were studied as superior energy-absorbing materials compared to metallic foams. Their energy-absorbing performance was assessed using a modified split Hopkinson pressure bar (SHPB). Key parameters included maximum impact acceleration (a

Identifiants

pubmed: 38114664
doi: 10.1038/s41598-023-49386-6
pii: 10.1038/s41598-023-49386-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22597

Subventions

Organisme : Agency for Defense Development of the Korean Government
ID : UI2200321D

Informations de copyright

© 2023. The Author(s).

Références

Santosa, S. P., Arifurrahman, F., Izzudin, M. H., Widagdo, D. & Gunawan, L. Response analysis of blast impact loading of metal-foam sandwich panels. Procedia Eng. 173, 495–502 (2017).
doi: 10.1016/j.proeng.2016.12.073
Dukhan, N. Metal Foams: Fundamentals and Applications (DEStech Publications Inc, 2013).
Dinesh, B. V. S. & Bhattacharya, A. Comparison of energy absorption characteristics of PCM-metal foam systems with different pore size distributions. J. Energy Storage 28, 101190 (2020).
doi: 10.1016/j.est.2019.101190
Tabrizi, Y. A. & Rabiei, A. Use of composite metal foam for improving absorption of collision forces. Proc. Mater. Sci. 4, 377–382 (2014).
doi: 10.1016/j.mspro.2014.07.577
Opara, L. K., Vesenjak, M., Duarte, I., Ren, Z. & Domazet, Z. Infrared thermography as a method for energy absorption evaluation of metal foams. Mater. Today Proc. 3, 1025–1030 (2016).
doi: 10.1016/j.matpr.2016.03.041
Liu, H., Cao, Z. K., Luo, H. J., Shi, J. C. & Yao, G. C. Performance of closed-cell aluminum foams subjected to impact loading. Mater. Sci. Eng. A 570, 27–31 (2013).
doi: 10.1016/j.msea.2012.11.094
Kumar, R. et al. Lightweight open cell aluminum foam for superior mechanical and electromagnetic interference shielding properties. Mater. Chem. Phys. 240, 122274 (2020).
doi: 10.1016/j.matchemphys.2019.122274
Simone, A. E. & Gibson, L. J. Aluminum foams produced by liquid-state processes. Acta Mater. 46, 3109–3123 (1998).
doi: 10.1016/S1359-6454(98)00017-2
Garcia-Moreno, Y. F. Commercial applications of metal foams: Their properties and production. Materials 9(2), 85 (2016).
doi: 10.3390/ma9020085 pubmed: 28787887 pmcid: 5456484
Haq, A. U. & Reddy, N. S. K. A brief review on various high energy absorbing materials. Mater. Today Proc. 38, 3198–3204 (2021).
doi: 10.1016/j.matpr.2020.09.648
Sharma, S. S., Yadav, S., Joshi, A., Goyal, A. & Khatri, R. Application of metallic foam in vehicle structure: A review. Mater. Today Proc. 63, 347–353 (2022).
doi: 10.1016/j.matpr.2022.03.201
Kim, S. et al. Energy-absorption analyses of grooved Al-sheet stacks using modificed split Hopkinson pressure bar. Mater. Sci. Eng. A 886, 145721 (2023).
doi: 10.1016/j.msea.2023.145721
L.L.C. Matweb, Matweb Material Property Data. http://www.matweb.com/ . Accessed February 2023.
Zhao, H., Gary, G. & Klepaczko, J. R. On the use of a viscoelastic split Hopkinson pressure bar. Int. J. Impact Eng. 19, 319–330 (1997).
doi: 10.1016/S0734-743X(96)00038-3
Iwamoto, T. & Yokoyama, T. Effects of radial inertia and end friction in specimen geometry in split Hopkinson pressure bar tests: A computational study. Mech. Mater. 51, 97–109 (2012).
doi: 10.1016/j.mechmat.2012.04.007
Feng, S., Zhou, Y. & Li, Q. M. Damage behavior and energy absorption characteristics of foamed concrete under dynamic load. Constr. Build. Mater. 357, 129340 (2022).
doi: 10.1016/j.conbuildmat.2022.129340
Xu, X., Han, J., Cong, D. & Zheng, S. High-power impact experimental generation analysis using hydraulic impact simulation tester. In 2019 IEEE 3rd ITNEC, Chengdu, China, 2098–2102 (2019).
Gan, L., Zhang, H., Zhou, C. & Liu, L. Impact load buffering method based on stress wave attenuation principle. Int. J. Appl. Mech. 11(2), 1950019 (2019).
doi: 10.1142/S1758825119500194
Chen, R., Sui, L., Liu, Q. & Qiu, Q. Research on the cushioning effect of protective materials under high impact. J. Phys. Conf. Ser. 1635, 012091 (2020).
doi: 10.1088/1742-6596/1635/1/012091
Davies, G. J. & Zhen, S. Metallic foams: Their production, properties and applications. J. Mater. Sci. 18, 1899–1911 (1983).
doi: 10.1007/BF00554981
Kim, S. et al. Analyses of impact energy-absorbing performance of open- and closed-cell Al foams using modified split Hopkinson pressure bar. J. Alloys Compd. 965, 171349 (2023).
doi: 10.1016/j.jallcom.2023.171349
Siengchin, S. A review on lightweight materials for defense applications: Present and future developments. Def. Technol. 24, 1–17 (2023).
doi: 10.1016/j.dt.2023.02.025
Malik, A., Nazeer, F. & Wang, Y. A prospective way to achieve ballistic impact resistance of lightweight magnesium alloys. Metals 12(2), 241 (2022).
doi: 10.3390/met12020241
Gioux, G., McCormack, T. M. & Gibson, L. J. Failure of aluminum foams under multiaxial loads. Int. J. Mech. Sci. 42, 1097–1117 (2000).
doi: 10.1016/S0020-7403(99)00043-0
Bendarma, A. et al. Dynamic behavior of aluminum alloy Aw 5005 undergoing interfacial friction and specimen configuration in split Hopkinson pressure bar system at high strain rate and temperatures. Materials 13(20), 4614 (2020).
doi: 10.3390/ma13204614 pubmed: 33081228 pmcid: 7602877
Lifshitz, J. M. & Leber, H. Data processing in the split Hopkinson pressure bar tests. Int. J. Impact Eng. 15, 723–733 (1994).
doi: 10.1016/0734-743X(94)90011-9
Kajberg, J. & Sundin, K.-G. Material characterisation using high-temperature split Hopkinson pressure bar. J. Mater. Process. Technol. 213, 522–531 (2013).
doi: 10.1016/j.jmatprotec.2012.11.008
Jo, M. C. et al. Role of retained austenite on adiabatic shear band formation during high strain rate loading in high-strength bainitic steels. Mater. Sci. Eng. A 778, 139118 (2020).
doi: 10.1016/j.msea.2020.139118
Kim, S. et al. Suppression of adiabatic shear band formation by martensitic transformation of retained austenite during split Hopkinson pressure bar test for a high-strength bainitic steel. Mater. Sci. Eng. A 814, 141127 (2021).
doi: 10.1016/j.msea.2021.141127
Wang, C. T. et al. Strain rate effects on the mechanical properties of an AlCoCrFeAi high-entropy alloy. Met. Mater. Int. 27, 2310–2318 (2021).
doi: 10.1007/s12540-020-00920-5
Kim, S. et al. Correlation of dynamic compressive properties, adiabatic shear banding, and ballistic performance of high-strength 2139 and 7056 aluminum alloys. Mater. Sci. Eng. A 804, 140757 (2021).
doi: 10.1016/j.msea.2021.140757

Auteurs

Selim Kim (S)

Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.

Minu Kim (M)

Agency for Defense Development, Daejeon, 34186, Republic of Korea.

Ki Jong Kim (KJ)

The One Metal Inc., Ansan, 15599, Republic of Korea.

Jae Min Lee (JM)

PGM R&D Institute, Hanwha Aerospace, Daejeon, 34101, Republic of Korea.

Hae-Won Cheong (HW)

Agency for Defense Development, Daejeon, 34186, Republic of Korea.

Hyoung Seop Kim (HS)

Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
Graduate Institute of Ferrous & Eco Materials Technology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.

Sunghak Lee (S)

Graduate Institute of Ferrous & Eco Materials Technology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea. shlee@postech.ac.kr.

Classifications MeSH