Circulating ESR1, long non-coding RNA HOTAIR and microRNA-130a gene expression as biomarkers for breast cancer stage and metastasis.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
19 Dec 2023
19 Dec 2023
Historique:
received:
07
08
2023
accepted:
14
12
2023
medline:
20
12
2023
pubmed:
20
12
2023
entrez:
19
12
2023
Statut:
epublish
Résumé
Breast cancer, the most prevalent cancer among women, has posed a significant challenge in identifying biomarkers for early diagnosis and prognosis. This study aimed to elucidate the gene expression profile of Estrogen Receptor-1 (ESR-1), long non-coding RNA HOTAIR, and microRNA-130a in the serum of Egyptian breast cancer patients, evaluating the potential of HOTAIR and miR-130a as biomarkers for predicting pathological parameters in BC. The study involved 45 patients with primary BC, with serum samples collected preoperatively and postoperatively twice. The expression levels of ESR-1, HOTAIR, and miR-130a were quantified using real-time PCR and analyzed for correlations with each other and with the clinical and pathological parameters of the patients. Serum HOTAIR levels exhibited a strong positive association with metastasis and demonstrated a significant increase after 6 months in all patients with locally advanced and stage IV BC. Conversely, tumors with advanced stages and metastatic lesions showed significantly lower expression levels of miR-130a. Notably, a significant positive correlation was observed between preoperative ESR-1 expression and both HOTAIR and miR-130a levels. Serum HOTAIR and miR-130a levels have emerged as promising non-invasive biomarkers with the potential to predict the pathological features of BC patients. HOTAIR, an oncogenic long non-coding RNA (lncRNA), and miR-130a, a tumor suppressor miRNA, play crucial roles in tumor progression. Further investigations are warranted to elucidate the intricate interplay between HOTAIR and miR-130a and to fully comprehend the contribution of HOTAIR to BC recurrence and its potential utility in early relapse prediction.
Identifiants
pubmed: 38114755
doi: 10.1038/s41598-023-50007-5
pii: 10.1038/s41598-023-50007-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22654Informations de copyright
© 2023. The Author(s).
Références
Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61(2), 69–90. https://doi.org/10.3322/caac.20107 (2011).
doi: 10.3322/caac.20107
pubmed: 21296855
Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424. https://doi.org/10.3322/caac.21492 (2018).
doi: 10.3322/caac.21492
pubmed: 30207593
Ibrahim, A. S., Khaled, H. M., Mikhail, N. N., Baraka, H. & Kamel, H. Cancer incidence in Egypt: Results of the national population-based cancer registry program. J. Cancer Epidemiol. 2014, 437971. https://doi.org/10.1155/2014/437971 (2014).
doi: 10.1155/2014/437971
pubmed: 25328522
pmcid: 4189936
Milevskiy, M. J. G. et al. Long-range regulators of the lncRNA HOTAIR enhance its prognostic potential in breast cancer. Hum. Mol. Genet. 25(15), 3269–3283. https://doi.org/10.1093/hmg/ddw177 (2016).
doi: 10.1093/hmg/ddw177
pubmed: 27378691
pmcid: 5179926
Guo, L. et al. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp. Hematol. Oncol. 12, 3. https://doi.org/10.1186/s40164-022-00363-1 (2023).
doi: 10.1186/s40164-022-00363-1
pubmed: 36624542
pmcid: 9830930
Heneghan, H. M., Miller, N., Lowery, A. J., Sweeney, K. J. & Kerin, M. J. MicroRNAs as novel biomarkers for breast cancer. J. Oncol. 2009, 950201. https://doi.org/10.1155/2010/950201 (2009).
doi: 10.1155/2010/950201
pubmed: 19639033
Dai, X., Kaushik, A. C. & Zhang, J. The emerging role of major regulatory RNAs in cancer control. Front. Oncol. 9, 920. https://doi.org/10.3389/fonc.2019.00920 (2019).
doi: 10.3389/fonc.2019.00920
pubmed: 31608229
pmcid: 6771296
Ma, M.-Z. et al. Long non-coding RNA HOTAIR, a c-Myc activated driver of malignancy, negatively regulates miRNA-130a in gallbladder cancer. Mol. Cancer 13, 156. https://doi.org/10.1186/1476-4598-13-156 (2014).
doi: 10.1186/1476-4598-13-156
pubmed: 24953832
pmcid: 4085645
Tang, Q. & Hann, S. S. HOTAIR: An oncogenic long non-coding RNA in human cancer. Cell. Physiol. Biochem. 47(3), 893–913 (2018).
doi: 10.1159/000490131
pubmed: 29843138
Zhang, H. D., Jiang, L. H., Sun, D. W., Li, J. & Ji, Z. L. The role of miR-130a in cancer. Breast Cancer 24(4), 521–527. https://doi.org/10.1007/s12282-017-0776-x (2017).
doi: 10.1007/s12282-017-0776-x
pubmed: 28477068
Cantile, M., Di Bonito, M., Tracey De Bellis, M. & Botti, G. Functional interaction among lncRNA HOTAIR and MicroRNAs in cancer and other human diseases. Cancers (Basel) 13(3), 570. https://doi.org/10.3390/cancers13030570 (2021).
doi: 10.3390/cancers13030570
pubmed: 33540611
pmcid: 7867281
Keeling, J. W., Özer, E., King, G. & Walker, F. Oestrogen receptor alpha in female fetal, infant, and child mammary tissue. J. Pathol. 191(4), 449–451 (2000).
doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH661>3.0.CO;2-#
pubmed: 10918221
Abderrahman, B. & Jordan, V. C. A novel strategy to improve women’s health: Selective estrogen receptor modulators. In Estrogen Receptor and Breast Cancer: Celebrating the 60th Anniversary of the Discovery of ER (ed. Zhang, X.) 189–213 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-99350-8_8 .
doi: 10.1007/978-3-319-99350-8_8
Zhu, B. T., Han, G.-Z., Shim, J.-Y., Wen, Y. & Jiang, X.-R. Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor α and β subtypes: Insights into the structural determinants favoring a differential subtype binding. Endocrinology 147(9), 4132–4150. https://doi.org/10.1210/en.2006-0113 (2006).
doi: 10.1210/en.2006-0113
pubmed: 16728493
Pawłowska, E., Szczepanska, J. & Blasiak, J. The long noncoding RNA HOTAIR in breast cancer: Does autophagy play a role?. Int. J. Mol. Sci. 18(11), 2317. https://doi.org/10.3390/ijms18112317 (2017).
doi: 10.3390/ijms18112317
pubmed: 29469819
pmcid: 5713286
Meyer, J. S. et al. Breast carcinoma malignancy grading by Bloom–Richardson system vs proliferation index: Reproducibility of grade and advantages of proliferation index. Mod. Pathol. 18(8), 1067–1078. https://doi.org/10.1038/modpathol.3800388 (2005).
doi: 10.1038/modpathol.3800388
pubmed: 15920556
Bansal, C. et al. Comparative evaluation of the modified Scarff–Bloom–Richardson grading system on breast carcinoma aspirates and histopathology. CytoJournal https://doi.org/10.4103/1742-6413.92550 (2012).
doi: 10.4103/1742-6413.92550
pubmed: 22363393
pmcid: 3280007
Edge, S. B. & Compton, C. C. The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 17(6), 1471–1474. https://doi.org/10.1245/s10434-010-0985-4 (2010).
doi: 10.1245/s10434-010-0985-4
pubmed: 20180029
D’Eredita, G., Giardina, C., Martellotta, M., Natale, T. & Ferrarese, F. Prognostic factors in breast cancer: The predictive value of the Nottingham Prognostic Index in patients with a long-term follow-up that were treated in a single institution. Eur. J. Cancer 37(5), 591–596. https://doi.org/10.1016/s0959-8049(00)00435-4 (2001).
doi: 10.1016/s0959-8049(00)00435-4
pubmed: 11290434
Guerra, I., Algorta, J., Díaz de Otazu, R., Pelayo, A. & Fariña, J. Immunohistochemical prognostic index for breast cancer in young women. Mol. Pathol. 56(6), 323–327 (2003).
doi: 10.1136/mp.56.6.323
pubmed: 14645694
pmcid: 1187350
Cantile, M. et al. Long non-coding RNA HOTAIR in breast cancer therapy. Cancers (Basel) 12(5), 1197. https://doi.org/10.3390/cancers12051197 (2020).
doi: 10.3390/cancers12051197
pubmed: 32397382
pmcid: 7281113
Sørensen, K. P. et al. Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res. Treat. 142(3), 529–536. https://doi.org/10.1007/s10549-013-2776-7 (2013).
doi: 10.1007/s10549-013-2776-7
pubmed: 24258260
Lu, L. et al. Association of large noncoding RNA HOTAIR expression and its downstream intergenic CpG island methylation with survival in breast cancer. Breast Cancer Res. Treat. 136(3), 875–883. https://doi.org/10.1007/s10549-012-2314-z (2012).
doi: 10.1007/s10549-012-2314-z
pubmed: 23124417
Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291), 1071 (2010).
doi: 10.1038/nature08975
pubmed: 20393566
pmcid: 3049919
Chisholm, K. M. et al. Detection of long non-coding RNA in archival tissue: Correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS One 7(10), e47998. https://doi.org/10.1371/journal.pone.0047998 (2012).
doi: 10.1371/journal.pone.0047998
pubmed: 23133536
pmcid: 3485022
Li, J. et al. HOTAIR: A key regulator in gynecologic cancers. Cancer Cell Int. 17(1), 65 (2017).
doi: 10.1186/s12935-017-0434-6
pubmed: 28649178
pmcid: 5480152
Mozdarani, H., Ezzatizadeh, V. & Rahbar Parvaneh, R. The emerging role of the long non-coding RNA HOTAIR in breast cancer development and treatment. J. Transl. Med. 18, 152. https://doi.org/10.1186/s12967-020-02320-0 (2020).
doi: 10.1186/s12967-020-02320-0
pubmed: 32245498
pmcid: 7119166
Zhang, A. et al. LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Rep. 13(1), 209–221 (2015).
doi: 10.1016/j.celrep.2015.08.069
pubmed: 26411689
pmcid: 4757469
Xue, X. et al. LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene 35(21), 2746–2755. https://doi.org/10.1038/onc.2015.340 (2016).
doi: 10.1038/onc.2015.340
pubmed: 26364613
Kong, X., Zhang, J., Li, J., Shao, J. & Fang, L. MiR-130a-3p inhibits migration and invasion by regulating RAB5B in human breast cancer stem cell-like cells. Biochem. Biophys. Res. Commun. 501(2), 486–493 (2018).
doi: 10.1016/j.bbrc.2018.05.018
pubmed: 29746865
Mallela, K., Shivananda, S., Gopinath, K. S. & Kumar, A. Oncogenic role of MiR-130a in oral squamous cell carcinoma. Sci. Rep. 11(1), 7787. https://doi.org/10.1038/s41598-021-87388-4 (2021).
doi: 10.1038/s41598-021-87388-4
pubmed: 33833339
pmcid: 8032739
Lohcharoenkal, W. et al. MiR-130a acts as a tumor suppressor microRNA in cutaneous squamous cell carcinoma and regulates the activity of the BMP/SMAD pathway by suppressing ACVR1. J. Investig. Dermatol. 141(8), 1922–1931. https://doi.org/10.1016/j.jid.2021.01.028 (2021).
doi: 10.1016/j.jid.2021.01.028
pubmed: 33766507
Boll, K. et al. MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene 32(3), 277 (2013).
doi: 10.1038/onc.2012.55
pubmed: 22391564
Pan, Y. et al. MicroRNA-130a inhibits cell proliferation, invasion and migration in human breast cancer by targeting the RAB5A. Int. J. Clin. Exp. Pathol. 8(1), 384–393 (2015).
pubmed: 25755726
pmcid: 4348820
Chen, X. et al. microRNA-130a suppresses breast cancer cell migration and invasion by targeting FOSL1 and upregulating ZO-1. J. Cell. Biochem. 119(6), 4945–4956. https://doi.org/10.1002/jcb.26739 (2018).
doi: 10.1002/jcb.26739
pubmed: 29384218
Karreth, F. A. & Pandolfi, P. P. ceRNA cross-talk in cancer: When ce-bling rivalries go awry. Cancer Discov. 3(10), 1113–1121 (2013).
doi: 10.1158/2159-8290.CD-13-0202
pubmed: 24072616
pmcid: 3801300
He, W., Li, D. & Zhang, X. LncRNA HOTAIR promotes the proliferation and invasion/metastasis of breast cancer cells by targeting the miR-130a-3p/Suv39H1 axis. Biochem. Biophys. Rep. 30, 101279. https://doi.org/10.1016/j.bbrep.2022.101279 (2022).
doi: 10.1016/j.bbrep.2022.101279
pubmed: 35619625
pmcid: 9126846
Chu, Y. et al. SUV39H1 regulates the progression of MLL-AF9-induced acute myeloid leukemia. Oncogene 39(50), 7239–7252. https://doi.org/10.1038/s41388-020-01495-6 (2020).
doi: 10.1038/s41388-020-01495-6
pubmed: 33037410
pmcid: 7728597