Circulating ESR1, long non-coding RNA HOTAIR and microRNA-130a gene expression as biomarkers for breast cancer stage and metastasis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 Dec 2023
Historique:
received: 07 08 2023
accepted: 14 12 2023
medline: 20 12 2023
pubmed: 20 12 2023
entrez: 19 12 2023
Statut: epublish

Résumé

Breast cancer, the most prevalent cancer among women, has posed a significant challenge in identifying biomarkers for early diagnosis and prognosis. This study aimed to elucidate the gene expression profile of Estrogen Receptor-1 (ESR-1), long non-coding RNA HOTAIR, and microRNA-130a in the serum of Egyptian breast cancer patients, evaluating the potential of HOTAIR and miR-130a as biomarkers for predicting pathological parameters in BC. The study involved 45 patients with primary BC, with serum samples collected preoperatively and postoperatively twice. The expression levels of ESR-1, HOTAIR, and miR-130a were quantified using real-time PCR and analyzed for correlations with each other and with the clinical and pathological parameters of the patients. Serum HOTAIR levels exhibited a strong positive association with metastasis and demonstrated a significant increase after 6 months in all patients with locally advanced and stage IV BC. Conversely, tumors with advanced stages and metastatic lesions showed significantly lower expression levels of miR-130a. Notably, a significant positive correlation was observed between preoperative ESR-1 expression and both HOTAIR and miR-130a levels. Serum HOTAIR and miR-130a levels have emerged as promising non-invasive biomarkers with the potential to predict the pathological features of BC patients. HOTAIR, an oncogenic long non-coding RNA (lncRNA), and miR-130a, a tumor suppressor miRNA, play crucial roles in tumor progression. Further investigations are warranted to elucidate the intricate interplay between HOTAIR and miR-130a and to fully comprehend the contribution of HOTAIR to BC recurrence and its potential utility in early relapse prediction.

Identifiants

pubmed: 38114755
doi: 10.1038/s41598-023-50007-5
pii: 10.1038/s41598-023-50007-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22654

Informations de copyright

© 2023. The Author(s).

Références

Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61(2), 69–90. https://doi.org/10.3322/caac.20107 (2011).
doi: 10.3322/caac.20107 pubmed: 21296855
Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424. https://doi.org/10.3322/caac.21492 (2018).
doi: 10.3322/caac.21492 pubmed: 30207593
Ibrahim, A. S., Khaled, H. M., Mikhail, N. N., Baraka, H. & Kamel, H. Cancer incidence in Egypt: Results of the national population-based cancer registry program. J. Cancer Epidemiol. 2014, 437971. https://doi.org/10.1155/2014/437971 (2014).
doi: 10.1155/2014/437971 pubmed: 25328522 pmcid: 4189936
Milevskiy, M. J. G. et al. Long-range regulators of the lncRNA HOTAIR enhance its prognostic potential in breast cancer. Hum. Mol. Genet. 25(15), 3269–3283. https://doi.org/10.1093/hmg/ddw177 (2016).
doi: 10.1093/hmg/ddw177 pubmed: 27378691 pmcid: 5179926
Guo, L. et al. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp. Hematol. Oncol. 12, 3. https://doi.org/10.1186/s40164-022-00363-1 (2023).
doi: 10.1186/s40164-022-00363-1 pubmed: 36624542 pmcid: 9830930
Heneghan, H. M., Miller, N., Lowery, A. J., Sweeney, K. J. & Kerin, M. J. MicroRNAs as novel biomarkers for breast cancer. J. Oncol. 2009, 950201. https://doi.org/10.1155/2010/950201 (2009).
doi: 10.1155/2010/950201 pubmed: 19639033
Dai, X., Kaushik, A. C. & Zhang, J. The emerging role of major regulatory RNAs in cancer control. Front. Oncol. 9, 920. https://doi.org/10.3389/fonc.2019.00920 (2019).
doi: 10.3389/fonc.2019.00920 pubmed: 31608229 pmcid: 6771296
Ma, M.-Z. et al. Long non-coding RNA HOTAIR, a c-Myc activated driver of malignancy, negatively regulates miRNA-130a in gallbladder cancer. Mol. Cancer 13, 156. https://doi.org/10.1186/1476-4598-13-156 (2014).
doi: 10.1186/1476-4598-13-156 pubmed: 24953832 pmcid: 4085645
Tang, Q. & Hann, S. S. HOTAIR: An oncogenic long non-coding RNA in human cancer. Cell. Physiol. Biochem. 47(3), 893–913 (2018).
doi: 10.1159/000490131 pubmed: 29843138
Zhang, H. D., Jiang, L. H., Sun, D. W., Li, J. & Ji, Z. L. The role of miR-130a in cancer. Breast Cancer 24(4), 521–527. https://doi.org/10.1007/s12282-017-0776-x (2017).
doi: 10.1007/s12282-017-0776-x pubmed: 28477068
Cantile, M., Di Bonito, M., Tracey De Bellis, M. & Botti, G. Functional interaction among lncRNA HOTAIR and MicroRNAs in cancer and other human diseases. Cancers (Basel) 13(3), 570. https://doi.org/10.3390/cancers13030570 (2021).
doi: 10.3390/cancers13030570 pubmed: 33540611 pmcid: 7867281
Keeling, J. W., Özer, E., King, G. & Walker, F. Oestrogen receptor alpha in female fetal, infant, and child mammary tissue. J. Pathol. 191(4), 449–451 (2000).
doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH661>3.0.CO;2-# pubmed: 10918221
Abderrahman, B. & Jordan, V. C. A novel strategy to improve women’s health: Selective estrogen receptor modulators. In Estrogen Receptor and Breast Cancer: Celebrating the 60th Anniversary of the Discovery of ER (ed. Zhang, X.) 189–213 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-99350-8_8 .
doi: 10.1007/978-3-319-99350-8_8
Zhu, B. T., Han, G.-Z., Shim, J.-Y., Wen, Y. & Jiang, X.-R. Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor α and β subtypes: Insights into the structural determinants favoring a differential subtype binding. Endocrinology 147(9), 4132–4150. https://doi.org/10.1210/en.2006-0113 (2006).
doi: 10.1210/en.2006-0113 pubmed: 16728493
Pawłowska, E., Szczepanska, J. & Blasiak, J. The long noncoding RNA HOTAIR in breast cancer: Does autophagy play a role?. Int. J. Mol. Sci. 18(11), 2317. https://doi.org/10.3390/ijms18112317 (2017).
doi: 10.3390/ijms18112317 pubmed: 29469819 pmcid: 5713286
Meyer, J. S. et al. Breast carcinoma malignancy grading by Bloom–Richardson system vs proliferation index: Reproducibility of grade and advantages of proliferation index. Mod. Pathol. 18(8), 1067–1078. https://doi.org/10.1038/modpathol.3800388 (2005).
doi: 10.1038/modpathol.3800388 pubmed: 15920556
Bansal, C. et al. Comparative evaluation of the modified Scarff–Bloom–Richardson grading system on breast carcinoma aspirates and histopathology. CytoJournal https://doi.org/10.4103/1742-6413.92550 (2012).
doi: 10.4103/1742-6413.92550 pubmed: 22363393 pmcid: 3280007
Edge, S. B. & Compton, C. C. The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 17(6), 1471–1474. https://doi.org/10.1245/s10434-010-0985-4 (2010).
doi: 10.1245/s10434-010-0985-4 pubmed: 20180029
D’Eredita, G., Giardina, C., Martellotta, M., Natale, T. & Ferrarese, F. Prognostic factors in breast cancer: The predictive value of the Nottingham Prognostic Index in patients with a long-term follow-up that were treated in a single institution. Eur. J. Cancer 37(5), 591–596. https://doi.org/10.1016/s0959-8049(00)00435-4 (2001).
doi: 10.1016/s0959-8049(00)00435-4 pubmed: 11290434
Guerra, I., Algorta, J., Díaz de Otazu, R., Pelayo, A. & Fariña, J. Immunohistochemical prognostic index for breast cancer in young women. Mol. Pathol. 56(6), 323–327 (2003).
doi: 10.1136/mp.56.6.323 pubmed: 14645694 pmcid: 1187350
Cantile, M. et al. Long non-coding RNA HOTAIR in breast cancer therapy. Cancers (Basel) 12(5), 1197. https://doi.org/10.3390/cancers12051197 (2020).
doi: 10.3390/cancers12051197 pubmed: 32397382 pmcid: 7281113
Sørensen, K. P. et al. Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res. Treat. 142(3), 529–536. https://doi.org/10.1007/s10549-013-2776-7 (2013).
doi: 10.1007/s10549-013-2776-7 pubmed: 24258260
Lu, L. et al. Association of large noncoding RNA HOTAIR expression and its downstream intergenic CpG island methylation with survival in breast cancer. Breast Cancer Res. Treat. 136(3), 875–883. https://doi.org/10.1007/s10549-012-2314-z (2012).
doi: 10.1007/s10549-012-2314-z pubmed: 23124417
Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291), 1071 (2010).
doi: 10.1038/nature08975 pubmed: 20393566 pmcid: 3049919
Chisholm, K. M. et al. Detection of long non-coding RNA in archival tissue: Correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS One 7(10), e47998. https://doi.org/10.1371/journal.pone.0047998 (2012).
doi: 10.1371/journal.pone.0047998 pubmed: 23133536 pmcid: 3485022
Li, J. et al. HOTAIR: A key regulator in gynecologic cancers. Cancer Cell Int. 17(1), 65 (2017).
doi: 10.1186/s12935-017-0434-6 pubmed: 28649178 pmcid: 5480152
Mozdarani, H., Ezzatizadeh, V. & Rahbar Parvaneh, R. The emerging role of the long non-coding RNA HOTAIR in breast cancer development and treatment. J. Transl. Med. 18, 152. https://doi.org/10.1186/s12967-020-02320-0 (2020).
doi: 10.1186/s12967-020-02320-0 pubmed: 32245498 pmcid: 7119166
Zhang, A. et al. LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Rep. 13(1), 209–221 (2015).
doi: 10.1016/j.celrep.2015.08.069 pubmed: 26411689 pmcid: 4757469
Xue, X. et al. LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene 35(21), 2746–2755. https://doi.org/10.1038/onc.2015.340 (2016).
doi: 10.1038/onc.2015.340 pubmed: 26364613
Kong, X., Zhang, J., Li, J., Shao, J. & Fang, L. MiR-130a-3p inhibits migration and invasion by regulating RAB5B in human breast cancer stem cell-like cells. Biochem. Biophys. Res. Commun. 501(2), 486–493 (2018).
doi: 10.1016/j.bbrc.2018.05.018 pubmed: 29746865
Mallela, K., Shivananda, S., Gopinath, K. S. & Kumar, A. Oncogenic role of MiR-130a in oral squamous cell carcinoma. Sci. Rep. 11(1), 7787. https://doi.org/10.1038/s41598-021-87388-4 (2021).
doi: 10.1038/s41598-021-87388-4 pubmed: 33833339 pmcid: 8032739
Lohcharoenkal, W. et al. MiR-130a acts as a tumor suppressor microRNA in cutaneous squamous cell carcinoma and regulates the activity of the BMP/SMAD pathway by suppressing ACVR1. J. Investig. Dermatol. 141(8), 1922–1931. https://doi.org/10.1016/j.jid.2021.01.028 (2021).
doi: 10.1016/j.jid.2021.01.028 pubmed: 33766507
Boll, K. et al. MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene 32(3), 277 (2013).
doi: 10.1038/onc.2012.55 pubmed: 22391564
Pan, Y. et al. MicroRNA-130a inhibits cell proliferation, invasion and migration in human breast cancer by targeting the RAB5A. Int. J. Clin. Exp. Pathol. 8(1), 384–393 (2015).
pubmed: 25755726 pmcid: 4348820
Chen, X. et al. microRNA-130a suppresses breast cancer cell migration and invasion by targeting FOSL1 and upregulating ZO-1. J. Cell. Biochem. 119(6), 4945–4956. https://doi.org/10.1002/jcb.26739 (2018).
doi: 10.1002/jcb.26739 pubmed: 29384218
Karreth, F. A. & Pandolfi, P. P. ceRNA cross-talk in cancer: When ce-bling rivalries go awry. Cancer Discov. 3(10), 1113–1121 (2013).
doi: 10.1158/2159-8290.CD-13-0202 pubmed: 24072616 pmcid: 3801300
He, W., Li, D. & Zhang, X. LncRNA HOTAIR promotes the proliferation and invasion/metastasis of breast cancer cells by targeting the miR-130a-3p/Suv39H1 axis. Biochem. Biophys. Rep. 30, 101279. https://doi.org/10.1016/j.bbrep.2022.101279 (2022).
doi: 10.1016/j.bbrep.2022.101279 pubmed: 35619625 pmcid: 9126846
Chu, Y. et al. SUV39H1 regulates the progression of MLL-AF9-induced acute myeloid leukemia. Oncogene 39(50), 7239–7252. https://doi.org/10.1038/s41388-020-01495-6 (2020).
doi: 10.1038/s41388-020-01495-6 pubmed: 33037410 pmcid: 7728597

Auteurs

Noura R Abdel-Hamid (NR)

Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.

Eman A Mohammed (EA)

Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.

Eman A Toraih (EA)

Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.

Mahmoud M Kamel (MM)

Department of Clinical Pathology, National Cancer Institute, Cairo University, Kasr Al-Aini Street, From El-Khalig Square, Cairo, 11796, Egypt.

Ahmed Samir Abdelhafiz (AS)

Department of Clinical Pathology, National Cancer Institute, Cairo University, Kasr Al-Aini Street, From El-Khalig Square, Cairo, 11796, Egypt. ahmed.samir@nci.cu.edu.eg.

Fouad M Badr (FM)

Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.

Classifications MeSH