Genetic diversity of Toxoplasma gondii in South America: occurrence, immunity, and fate of infection.
Atypical strains
Immunity
Toxoplasmosis
Virulence factors
Journal
Parasites & vectors
ISSN: 1756-3305
Titre abrégé: Parasit Vectors
Pays: England
ID NLM: 101462774
Informations de publication
Date de publication:
19 Dec 2023
19 Dec 2023
Historique:
received:
07
09
2023
accepted:
03
12
2023
medline:
20
12
2023
pubmed:
20
12
2023
entrez:
20
12
2023
Statut:
epublish
Résumé
Toxoplasma gondii is an intracellular parasite with a worldwide distribution. Toxoplasma gondii infections are of great concern for public health, and their impact is usually most severe in pregnant women and their foetuses, and in immunocompromised individuals. Displaying considerable genetic diversity, T. gondii strains differ widely according to geographical location, with archetypal strains predominantly found in the Northern Hemisphere and non-archetypal (atypical) strains, with highly diverse genotypes, found mainly in South America. In this review, we present an overview of the identification and distribution of non-archetypal strains of T. gondii. Special attention is paid to the strains that have been isolated in Brazil, their interaction with the host immunological response, and their impact on disease outcomes. The genetic differences among the strains are pivotal to the distinct immunological responses that they elicit. These differences arise from polymorphisms of key proteins released by the parasite, which represent important virulence factors. Infection with divergent non-archetypal strains can lead to unusual manifestations of the disease, even in immunocompetent individuals.
Identifiants
pubmed: 38115102
doi: 10.1186/s13071-023-06080-w
pii: 10.1186/s13071-023-06080-w
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
461Subventions
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : PhD Scholarship
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : Post-doctoral fellowship
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : #306036/2019-3
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : #312151/2020-9
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : #305514/2022-9
Informations de copyright
© 2023. The Author(s).
Références
Dubey JP. Advances in the life cycle of Toxoplasma gondii. Int J Parasitol. 1998;28:1019–24.
pubmed: 9724872
doi: 10.1016/S0020-7519(98)00023-X
Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int J Parasitol. 2002;30:1217–58.
doi: 10.1016/S0020-7519(00)00124-7
Flegr J, Prandota J, Sovičková M, Israili ZH. Toxoplasmosis—a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS ONE. 2014;9:e90203.
pubmed: 24662942
pmcid: 3963851
doi: 10.1371/journal.pone.0090203
Pinto-Ferreira F, Caldart ET, Pasquali AKS, Mitsuka-Breganó R, Freire RL, Navarro IT. Patterns of transmission and sources of infection in outbreaks of human toxoplasmosis. Emerg Infect Dis. 2019;25:2177–82.
pubmed: 31742524
pmcid: 6874273
doi: 10.3201/eid2512.181565
Dubey JP. Outbreaks of clinical toxoplasmosis in humans: five decades of personal experience, perspectives and lessons learned. Parasit Vectors. 2021;14:263.
pubmed: 34011387
pmcid: 8136135
doi: 10.1186/s13071-021-04769-4
Ajzenberg D, Collinet F, Mercier A, Vignoles P, Dardé ML. Genotyping of Toxoplasma gondii isolates with 15 microsatellite markers in a single multiplex PCR array. J Clin Microbiol. 2010;48:4641–5.
pubmed: 20881166
pmcid: 3008440
doi: 10.1128/JCM.01152-10
Su C, Khan A, Zhou P, Majumdar S, Ajzenberg D, Dardé ML, et al. Globally diverse Toxoplasma gondii isolates comprise six major clades originating from a small number of distinct ancestral lineages. Proc Natl Acad Sci U S A. 2012;109:5844–9.
pubmed: 22431627
pmcid: 3326454
doi: 10.1073/pnas.1203190109
Joeres M, Cardon G, Passebosc-Faure K, Plault N, Fernandez-Escobar M, Hamilton CM, et al. A ring trial to harmonize Toxoplasma gondii microsatellite typing: comparative analysis of results and recommendations for optimization. Eur J Clin Microbiol Infect Dis. 2023;42:803–18.
pubmed: 37093325
pmcid: 10266996
doi: 10.1007/s10096-023-04597-7
Howe DK, David SL. Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis. 1995;172:1561–6.
pubmed: 7594717
doi: 10.1093/infdis/172.6.1561
Su C, Evans D, Cole RH, Kissinger JC, Ajioka JW, Sibley LD. Recent expansion of Toxoplasma through enhanced oral transmission. Science. 2003;299:414–6.
pubmed: 12532022
doi: 10.1126/science.1078035
Shwab EK, Zhu XQ, Majumdar D, Majumdar D, Pena HFJ, Gennari SM, et al. Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology. 2014;141:453–61.
pubmed: 24477076
doi: 10.1017/S0031182013001844
Galal L, Ariey F, Gouilh MA, Dardé ML, Hamidovic A, Letourneur F, et al. A unique Toxoplasma gondii haplotype accompained the global expansion of cats. Nat Commun. 2022;13:5778.
pubmed: 36182919
pmcid: 9526699
doi: 10.1038/s41467-022-33556-7
Rico-Torres CP, Valenzuela-Moreno LF, Luna-Pasten H, Cedillo-Pelaez C, Correa D, Morales-Salinas E, et al. Genotyping of Toxoplasma gondii isolates from México reveals non-archetypal and potentially virulent strains for mice. Infect Genet Evol. 2023;113:105473.
pubmed: 37353185
doi: 10.1016/j.meegid.2023.105473
Ajzenberg D, Bañuls AL, Su C, Dumètre A, Demar M, Carme B, et al. Genetic diversity, clonality and sexuality in Toxoplasma gondii. Int J Parasitol. 2004;34:1185–96.
pubmed: 15380690
doi: 10.1016/j.ijpara.2004.06.007
Grigg ME, Boothroyd JC. Rapid identification of virulent type I strains of the protozoan pathogen Toxoplasma gondii by PCR-restriction fragment length polymorphism analysis at the B1 gene. J Clin Microbiol. 2001;39:398–400.
pubmed: 11136812
pmcid: 87743
doi: 10.1128/JCM.39.1.398-400.2001
Su C, Zhang X, Dubey JP. Genotyping of Toxoplasma gondii by multilocus PCR-RFLP markers: a high resolution and simple method for identification of parasites. Int J Parasitol. 2006;36:841–8.
pubmed: 16643922
doi: 10.1016/j.ijpara.2006.03.003
Su C, Shwab EK, Zhou P, Zhu XQ, Dubey JP. Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii. Parasitology. 2010;137:1–11.
pubmed: 19765337
doi: 10.1017/S0031182009991065
Saeij JPJ, Boyle JP, Boothroyd JC. Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host. Trends Parasitol. 2005;21:476–81.
pubmed: 16098810
doi: 10.1016/j.pt.2005.08.001
Khan A, Fux B, Su C, Dubey JP, Dardé ML, Ajioka JW, et al. Recent transcontinental sweep of Toxoplasma gondii driven by a single monomorphic chromosome. Proc Natl Acad Sci U S A. 2007;104:14872–7877.
pubmed: 17804804
pmcid: 1965483
doi: 10.1073/pnas.0702356104
Amouei A, Sarvi S, Sharif M, Aghayan SA, Javidnia J, Mizani A, et al. A systematic review of Toxoplasma gondii genotypes and feline: geographical distribution trends. Transbound Emerg Dis. 2020;67:46–64.
pubmed: 31464067
doi: 10.1111/tbed.13340
Pena HFJ, Marvulo MFV, Horta MC, Silva MA, Silva JCR, Siqueira DB, et al. Isolation and genetic characterisation of Toxoplasma gondii from a red-handed howler monkey (Alouatta belzebul), a jaguarundi (Puma yagouaroundi), and a black-eared opossum (Didelphis aurita) from Brazil. Vet Parasitol. 2011;175:377–81.
pubmed: 21055880
doi: 10.1016/j.vetpar.2010.10.015
Pena HFJ, Gennari SM, Dubey JP, Su C. Population structure and mouse-virulence of Toxoplasma gondii in Brazil. Int J Parasitol. 2008;38:561–9.
pubmed: 17963770
doi: 10.1016/j.ijpara.2007.09.004
Yai LEO, Ragozo AMA, Soares RM, Pena HFJ, Su C, Gennari SM. Genetic diversity among capybara (Hydrochaeris hydrochaeris) isolates of Toxoplasma gondii from Brazil. Vet Parasitol. 2009;162:332–7.
pubmed: 19375864
doi: 10.1016/j.vetpar.2009.03.007
Ragozo AMA, Pena HFJ, Yai LEO, Su C, Gennari SM. Genetic diversity among Toxoplasma gondii isolates of small ruminants from Brazil: novel genotypes revealed. Vet Parasitol. 2010;170:307–12.
pubmed: 20236768
doi: 10.1016/j.vetpar.2010.02.024
Carneiro ACAV, Andrade GM, Costa JGL, Pinheiro BV, Vasconcelos-Santos DV, Ferreira AM, et al. Genetic characterization of Toxoplasma gondii revealed highly diverse genotypes for isolates from newborns with congenital toxoplasmosis in southeastern Brazil. J Clin Microbiol. 2013;51:901–7.
pubmed: 23284022
pmcid: 3592078
doi: 10.1128/JCM.02502-12
Witter R, Pena HFJ, Maia MO, Magalhães AO, Morgado TO, Colodel EM, et al. Isolation and genotyping of Toxoplasma gondii in midwestern Brazil revealed high genetic diversity and new genotypes. Acta Trop. 2020;212:105681.
pubmed: 32926845
doi: 10.1016/j.actatropica.2020.105681
Witter R, Pena HFJ, Maia MO, Freitas LC, Almeida SLH, Aguar DM, et al. First report on the isolation and genotyping of Toxoplasma gondii strains from free-range chickens in the state of Mato Grosso, midwestern Brazil. Comp Immunol Microbiol Infect Dis. 2022;80:101725.
pubmed: 34847458
doi: 10.1016/j.cimid.2021.101725
Deiró AGJ, Prado DP, Sousa IP, Rocha DS, Bezerra RA, Gaiotto FA, et al. Presence of atypical genotypes of Toxoplasma gondii isolated from cats in the state of Bahia, Northeast of Brazil. PLoS ONE. 2021;16:e0253630.
pubmed: 34610028
pmcid: 8491887
doi: 10.1371/journal.pone.0253630
Clementino Andrade MM, Pinheiro BV, Cunha MM, Carneiro ACAV, Andrade Neto VF, Vitor RWA. New gentotypes of Toxoplasma gondii obtained from farm animals in northeast Brazil. Res Vet Sci. 2013;94:587–9.
pubmed: 23395253
doi: 10.1016/j.rvsc.2013.01.006
Aspinall TV, Guy EC, Roberts KE, Joynson DHM, Hyde JE, Sims PFG. Molecular evidence for multiple Toxoplasma gondii infections in individual patients in England and Wales: public health implications. Int J Parasitol. 2003;33:97–103.
pubmed: 12547351
doi: 10.1016/S0020-7519(02)00230-8
Lindstrom I, Sundar N, Lindh J, Kironde F, Kabasa JD, Kwok OCH, et al. Isolation and genotyping of Toxoplasma gondii from Ugandan chickens reveals frequent multiple infections. Parasitology. 2008;135:39–45.
pubmed: 17892617
doi: 10.1017/S0031182007003654
Pan S, Thompson RCA, Grigg ME, Sundar N, Smith A, Lymbery AJ. Western Australian marsupials are multiply infected with genetically diverse strains of Toxoplasma gondii. PLoS ONE. 2012;7:e45147.
pubmed: 23028812
pmcid: 3454407
doi: 10.1371/journal.pone.0045147
Verma SK, Sweeny AR, Lovallo MJ, Calero-Bernal R, Kwok OC, Jiang T, et al. Seroprevalence, isolation and co-infection of multiple Toxoplasma gondii strains in individuals bobcats (Lynx rufus) from Mississippi, USA. Int J Parasitol. 2017;47:297–303.
pubmed: 28238868
doi: 10.1016/j.ijpara.2016.12.007
Rêgo WMF, Costa JGL, Baraviera RCA, Pinto LV, Bessa GL, Lopes REN, et al. Association of ROP18 and ROP5 was efficient as a marker of virulence in atypical isolates of Toxoplasma gondii obtained from pigs and goats in Piauí, Brazil. Vet Parasitol. 2017;247:19–25.
pubmed: 29080759
doi: 10.1016/j.vetpar.2017.09.015
Silva ACS, de Barros LD, Barros VMC, Alcântara AM, Andrade MR, Garcia JL, et al. Occurrence of atypical and new genotypes of Toxoplasma gondii in free-range chickens intended for human consumption in Brazil. Acta Parasitol. 2020;65:774–8.
doi: 10.2478/s11686-020-00194-2
Casartelli-Alves L, Pereira SA, Ferreira LC, Couto RM, Schubach TM, Amendoeira MRR, et al. Genetic and histopathological characterization of Toxoplasma gondii genotypes isolated from free-range chickens reared in the metropolitan region of Rio de Janeiro state, Brazil. Parasitol Res. 2021;120:665–77.
pubmed: 33415402
doi: 10.1007/s00436-020-07011-9
Rêgo WMF, Costa JGL, Baraviera RCA, Pinto LV, Bessa GL, Lopes REN, et al. Genetic diversity of Toxoplasma gondii isolates obtained from free-living wild birds rescued in southeastern Brazil. Int J Parasitol Parasites Wildl. 2018;7:432–8.
pubmed: 30479944
pmcid: 6240670
doi: 10.1016/j.ijppaw.2018.11.001
Cortés DA, Aguilar MC, Ríos HA, Rodriguez FJ, Montes KV, Gómez-Marin JR, et al. Severe acute multi-systemic failure with bilateral ocular toxoplasmosis in immunocompetent patients from urban settings in Colombia: case reports. Am J Ophthalmol Case Rep. 2020;18:100661.
pubmed: 32195446
pmcid: 7078491
doi: 10.1016/j.ajoc.2020.100661
Moré G, Maksimov P, Pardini L, Herrmann DC, Bacigalupe D, Maksimov A, et al. Toxoplasma gondii infection in sentinel and free-range chickens from Argentina. Vet Parasitol. 2012;184:116–21.
pubmed: 21962965
doi: 10.1016/j.vetpar.2011.09.012
Pardini L, Bernstein M, Carral LA, Kaufer FJ, Dellarupe A, Gos ML, et al. Congenital human toxoplasmosis caused by non-clonal Toxoplasma gondii genotypes in Argentina. Parasitol Int. 2019;68:48–52.
pubmed: 30304711
doi: 10.1016/j.parint.2018.10.002
Pérez-Grisales LJ, Cruz-Moncada M, Peláez-Sánchez R, Díaz-Nieto JF. Toxoplasma gondii infection in Colombia with a review of hosts and their ecogeographic distribution. Zoonoses Public Health. 2021;68:38–53.
pubmed: 33249768
doi: 10.1111/zph.12787
Dubey JP, Velmurugan GV, Chockalingam A, Pena HJF, Oliveira LN, Leifer CA, et al. Genetic diversity of Toxoplasma gondii isolates from chickens from Brazil. Vet Parasitol. 2008;157:299–305.
pubmed: 18804329
pmcid: 4448939
doi: 10.1016/j.vetpar.2008.07.036
Barros LD, Taroda A, Zulpo DL, Cunha IAL, Sammi AS, Cardim ST, et al. Caracterização genética de isolados de Toxoplasma gondii de pombos (Zenaida auriculata) no Brasil. Rev Bras Parasitol Vet. 2014;23:443–8.
pubmed: 25517521
doi: 10.1590/s1984-29612014073
Raetz M, Kibardin A, Sturge CR, Pifer R, Li H, Burstein E, et al. Cooperation of TLR12 and TLR11 in the IRF8-dependent IL-12 response to Toxoplasma gondii profilin. J Immunol. 2013;191:4818–27.
pubmed: 24078692
doi: 10.4049/jimmunol.1301301
Sturge CR, Yarovinsky F. Complex immune cell interplay in the gamma interferon response during Toxoplasma gondii infection. Infect Immunity. 2014;82:3090–7.
doi: 10.1128/IAI.01722-14
Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science. 2005;308:1626–9.
pubmed: 15860593
doi: 10.1126/science.1109893
Lang C, Groß U, Lüder CGK. Subversion of innate and adaptive immune responses by Toxoplasma gondii. Parasitol Res. 2007;100:191–203.
pubmed: 17024357
doi: 10.1007/s00436-006-0306-9
Plattner F, Yarovinsky F, Romero S, Didry D, Carlier MF, Sher A, et al. Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host Microbe. 2008;3:77–87.
pubmed: 18312842
doi: 10.1016/j.chom.2008.01.001
Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev. 2003;3:133–46.
Gazzinelli RT, Hieny S, Wynn TA, Wolf S, Sher A. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon γ by an intracellular parasite and induces resistance in T-cell-deficient hosts (Toxoplasma gondii/natural killer cells). Proc Natl Acad Sci U S A. 1993;90:6115–9.
pubmed: 8100999
pmcid: 46878
doi: 10.1073/pnas.90.13.6115
Robben PM, Mordue DG, Truscott SM, Takeda K, Akira S, Sibley LD. Production of IL-12 by macrophages infected with Toxoplasma gondii depends on the parasite genotype. J Immunol. 2004;172:3686–94.
pubmed: 15004172
doi: 10.4049/jimmunol.172.6.3686
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Influence of the host and parasite strain on the immune response during Toxoplasma infection. Front Cell Infect Microbiol. 2020;10:580425.
pubmed: 33178630
pmcid: 7593385
doi: 10.3389/fcimb.2020.580425
Sibley LD, Boothroyd JC. Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature. 1992;359:82–5.
pubmed: 1355855
doi: 10.1038/359082a0
Zhang Y, Lai BS, Juhas M, Zhang Y. Toxoplasma gondii secretory proteins and their role in invasion and pathogenesis. Microbiol Res. 2019;227:126293.
pubmed: 31421715
doi: 10.1016/j.micres.2019.06.003
Saeij JPJ, Boyle JP, Coller S, Tylor S, Sibley LD, Brooke-Powell ET, et al. Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science. 2006;314:1780–3.
pubmed: 17170306
pmcid: 2646183
doi: 10.1126/science.1133690
Taylor S, Barragan A, Su C, Fux B, Fentress SJ, Tang K, et al. A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science. 2006;314:1776–80.
pubmed: 17170305
doi: 10.1126/science.1133643
Hernández-de-los-Ríos A, Murillo-Leon M, Mantilla-Muriel LE, Arenas AF, Vargas-Montes M, Cardona N, et al. Influence of two major Toxoplasma gondii virulence factors (ROP16 and ROP18) on the immune response of peripheral blood mononuclear cells to human toxoplasmosis infection. Front Cell Infect Microbiol. 2019;9:413.
pubmed: 31867288
pmcid: 6904310
doi: 10.3389/fcimb.2019.00413
Rommereim LM, Fox BA, Butler KL, Cantillana V, Taylor GA, Bzik DJ. Rhoptry and dense granule secreted effectors regulate CD8+ T cell recognition of Toxoplasma gondii infected host cells. Front Immunol. 2019;10:2104.
pubmed: 31555296
pmcid: 6742963
doi: 10.3389/fimmu.2019.02104
Taylor GA, Feng CG, Sher A. Control of IFN-γ-mediated host resistance to intracellular pathogens by immunity-related GTPases (p47 GTPases). Microbes Infect. 2007;9:1644–51.
pubmed: 18023232
doi: 10.1016/j.micinf.2007.09.004
Khaminets A, Hunn JP, Könen-Waisman S, Zhao YO, Preukschat D, Coers J, et al. Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole. Cell Microbiol. 2010;12:939–61.
pubmed: 20109161
pmcid: 2901525
doi: 10.1111/j.1462-5822.2010.01443.x
Zhao Y, Ferguson DJP, Wilson DC, Howard JC, Sibley LD, Yap GS. Virulent Toxoplasma gondii evade immunity-related GTPase (IRG)-mediated parasite vacuole disruption within primed macrophages. J Immunol. 2009;182:3775–81.
pubmed: 19265156
doi: 10.4049/jimmunol.0804190
Etheridge RD, Alaganan A, Tang K, Lou HJ, Turk BE, Sibley LD. The Toxoplasma gondii pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice. Cell Host Microbe. 2014;15:537–50.
pubmed: 24832449
pmcid: 4086214
doi: 10.1016/j.chom.2014.04.002
Behnke MS, Khan A, Wootton JC, Dubey JP, Tang K, Sibley LD. Virulence differences in Toxoplasma mediated by amplification of a family of polymorphic pseudokinases. Proc Natl Acad Sci U S A. 2011;108:9631–6.
pubmed: 21586633
pmcid: 3111276
doi: 10.1073/pnas.1015338108
Reese ML, Zeiner GM, Saeij JPJ, Boothroyd JC, Boyle JP. Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. Proc Natl Acad Sci U S A. 2011;108:9625–30.
pubmed: 21436047
pmcid: 3111280
doi: 10.1073/pnas.1015980108
Hunter CA, Sibley LD. Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nat Rev Microbiol. 2012;10:766–78.
pubmed: 23070557
pmcid: 3689224
doi: 10.1038/nrmicro2858
Zhu L, Qi W, Yang G, Yang Y, Wang Y, Zheng L, et al. Toxoplasma gondii rhoptry protein 7 (ROP7) interacts with NLRP3 and promotes inflammasome hyperactivation in THP-1-derived macrophages. Cells. 2022;11:1630.
pubmed: 35626667
pmcid: 9139738
doi: 10.3390/cells11101630
Tomita T, Guevara RB, Shah LM, Afrifa AY, Weiss LM. Secreted effectors modulating immune responses to Toxoplasma gondii. Life. 2021;11:988.
pubmed: 34575137
pmcid: 8467511
doi: 10.3390/life11090988
Wang P, Li S, Zhao Y, Zhang B, Li Y, Liu S, et al. The GRA15 protein from Toxoplasma gondii enhances host defense responses by activating the interferon stimulator STING. J Biol Chem. 2019;294:16494–508.
pubmed: 31416833
pmcid: 6851339
doi: 10.1074/jbc.RA119.009172
Ihara F, Fereig RM, Himori Y, Kameyama K, Umeda K, Tanaka S, et al. Toxoplasma gondii dense granule proteins 7, 14, and 15 are involved in modification and control of the immune response mediated via NF-κB pathway. Front Immunol. 2020;11:1709.
pubmed: 32849602
pmcid: 7412995
doi: 10.3389/fimmu.2020.01709
Rosowski EE, Lu D, Julien L, Rodda L, Gaiser RA, Jensen KDC, et al. Strain-specific activation of the NF-κB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. J Exp Med. 2011;208:195–212.
pubmed: 21199955
pmcid: 3023140
doi: 10.1084/jem.20100717
Yang N, Farrell A, Niedelman W, Melo M, Lu D, Julien L, et al. Genetic basis for phenotypic differences between different Toxoplasma gondii type I strains. BMC Genomics. 2013;14:467.
pubmed: 23837824
pmcid: 3710486
doi: 10.1186/1471-2164-14-467
Shastri AJ, Marino ND, Franco M, Lodoen MB, Boothroyd JC. GRA25 is a novel virulence factor of Toxoplasma gondii and influences the host immune response. Infect Immun. 2014;82:2595–605.
pubmed: 24711568
pmcid: 4019154
doi: 10.1128/IAI.01339-13
Hermanns T, Müller UB, Könen-Waisman S, Howard JC, Steinfeldt T. The Toxoplasma gondii rhoptry protein ROP18 is an Irga6-specific kinase and regulated by the dense granule protein GRA7. Cell Microbiol. 2016;18:244–59.
pubmed: 26247512
doi: 10.1111/cmi.12499
Fox BA, Guevara RB, Rommereim LM, Falla A, Bellini V, Pètre G, et al. Toxoplasma gondii parasitophorous vacuole membrane-associated dense granule proteins orchestrate chronic infection and GRA12 underpins resistance to host gamma interferon. MBio. 2019;10:e00589-e619.
pubmed: 31266861
pmcid: 6606796
doi: 10.1128/mBio.00589-19
Mercer HL, Snyder LM, Doherty CM, Fox BA, Bzik DJ, Denkers EY. Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity. PLoS Pathog. 2020;16:e1008572.
pubmed: 32413093
pmcid: 7255617
doi: 10.1371/journal.ppat.1008572
Ma JS, Sasai M, Ohshima J, Lee Y, Bando H, Takeda K, et al. Selective and strain-specific NFAT4 activation by the Toxoplasma gondii polymorphic dense granule protein GRA6. J Exp Med. 2014;211:2013–32.
pubmed: 25225460
pmcid: 4172224
doi: 10.1084/jem.20131272
Melo MB, Jensen KDC, Saeij JPJ. Toxoplasma gondii effectors are master regulators of the inflammatory response. Trends Parasitol. 2011;27:487–95.
pubmed: 21893432
pmcid: 3200456
doi: 10.1016/j.pt.2011.08.001
Bessa GL, Vitor RWA, Martins-Duarte ES. Toxoplasma gondii in South America: a differentiated pattern of spread, population structure and clinical manifestations. Parasitol Res. 2021;120:3065–76.
doi: 10.1007/s00436-021-07282-w
Bottós J, Miller RH, Belfort RN, Macedo AC, Belfort-Jr R, UNIFESP Toxoplasmosis Group, et al. Bilateral retinochoroiditis caused by an atypical strain of Toxoplasma gondii. Brit J Ophthalmol. 2009;93:1546–50.
doi: 10.1136/bjo.2009.162412
Khan A, Taylor S, Ajioka JW, Rosenthal BM, Sibley LD. Selection at a single locus leads to widespread expansion of Toxoplasma gondii lineages that are virulent in mice. PLoS Genet. 2009;5:e10000404.
doi: 10.1371/journal.pgen.1000404
Chen J, Li ZY, Zhou DH, Liu GH, Zhu XQ. Genetic diversity among Toxoplasma gondii strains from different hosts and geographical regions revealed by sequence analysis of GRA5 gene. Parasit Vectors. 2012;5:279.
pubmed: 23206419
pmcid: 3533945
doi: 10.1186/1756-3305-5-279
Behnke MS, Khan A, Lauron EJ, Jimah JR, Wang Q, Tolia NH, et al. Rhoptry proteins ROP5 and ROP18 are major murine virulence factors in genetically divergent South American strains of Toxoplasma gondii. PLoS Genet. 2015;11:e1005434.
pubmed: 26291965
pmcid: 4546408
doi: 10.1371/journal.pgen.1005434
Niedelman W, Gold DA, Rosowski EE, Sprokholt JK, Lim D, Arenas AF, et al. The rhoptry proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the murine, but not the human, interferon-gamma response. PLoS Pathog. 2012;8:e1002784.
pubmed: 22761577
pmcid: 3386190
doi: 10.1371/journal.ppat.1002784
Shwab EK, Jiang T, Pena HFJ, Gennari SM, Dubey JP, Su C. The ROP18 and ROP5 gene allele types are highly predictive of virulence in mice across globally distributed strains of Toxoplasma gondii. Int J Parasitol. 2016;46:141–6.
pubmed: 26699401
doi: 10.1016/j.ijpara.2015.10.005
Costa JGL, Pinto LV, de Baraviera RCA, Geiger SM, Araújo MSS, Martins-Filho AO, et al. Toxoplasma gondii: cytokine responses in mice reinfected with atypical strains. Exp Parasitol. 2020;218:108006.
pubmed: 32991867
doi: 10.1016/j.exppara.2020.108006
Bernstein M, Pardini L, Bello Pede Castro B, Unzaga JM, Venturini MC, Moré G. ROP18 and ROP5 alleles combinations are related with virulence of T. gondii isolates from Argentina. Parasitol Int. 2021;83:102328.
pubmed: 33713809
doi: 10.1016/j.parint.2021.102328
Hamilton CM, Black L, Oliveira S, Burrells A, Bartley PM, Melo RPB, et al. Comparative virulence of Caribbean, Brazilian and European isolates of Toxoplasma gondii. Parasit Vectors. 2019;12:104.
pubmed: 30871587
pmcid: 6416883
doi: 10.1186/s13071-019-3372-4
Pinheiro BV, Noviello MLM, Cunha MM, Tavares AT, Carneiro ACAV, Arantes RME, et al. Pathological changes in acute experimental toxoplasmosis with Toxoplasma gondii strains obtained from human cases of congenital disease. Exp Parasitol. 2015;156:87–94.
pubmed: 26072201
doi: 10.1016/j.exppara.2015.06.002
De-La-Torre A, Sauer A, Pfaff AW, Bourcier T, Brunet J, Speeg-Schatz C, et al. Severe South American ocular toxoplasmosis is associated with decreased IFN-γ/IL-17a and increased IL-6/IL-13 intraocular levels. PLoS Negl Trop Dis. 2013;7:e2541.
pubmed: 24278490
pmcid: 3837637
doi: 10.1371/journal.pntd.0002541
Brito RMM, Silva MCM, Vieira-Santos F, Lopes CA, Souza JLN, Bastilho AL, et al. Chronic infection by atypical Toxoplasma gondii strain induces disturbance in microglia population and altered behaviour in mice. Brain Behav Immun Health. 2023;30:100652.
pubmed: 37396335
pmcid: 10308216
doi: 10.1016/j.bbih.2023.100652
Mahmoud ME, Ihara F, Fereig RM, Nishimura M, Nishikawa Y. Induction of depression-related behaviors by reactivation of chronic Toxoplasma gondii infection in mice. Behav Brain Res. 2016;298:125–33.
pubmed: 26554725
doi: 10.1016/j.bbr.2015.11.005
Elsheikha HM, Zhu XQ. Toxoplasma gondii infection and schizophrenia: an inter-kingdom communication perspective. Curr Opin Infect Dis. 2016;29:311–8.
pubmed: 27120002
doi: 10.1097/QCO.0000000000000265
Xiao J, Prandovszky E, Kannan G, Plentnikov MV, Dickerson F, Severance EG, et al. Toxoplasma gondii: biological parameters of the connection to schizophrenia. Schizophr Bull. 2018;44:983–92.
pubmed: 29889280
pmcid: 6101499
doi: 10.1093/schbul/sby082
Barros JLVM, Barbosa IG, Salem H, Rocha NP, Kummer A, Okusaga OO, et al. Is there any association between Toxoplasma gondii infection and bipolar disorder? A systematic review and meta-analysis. J Affect Disord. 2017;209:59–65.
pubmed: 27889597
doi: 10.1016/j.jad.2016.11.016
Bak J, Shim SH, Kwon YJ, Lee HY, Kim JS, Yoon H, et al. The association between suicide attempts and Toxoplasma gondii infection. Clin Psychopharmacol Neurosci. 2018;16:95–102.
pubmed: 29397671
pmcid: 5810447
doi: 10.9758/cpn.2018.16.1.95
Cook TB, Brenner LA, Cloninger CR, Langenberg P, Igbide A, Giegling I, et al. “Latent” infection with Toxoplasma gondii: association with trait aggression and impulsivity in healthy adults. J Psychiatr Res. 2015;60:87–94.
pubmed: 25306262
doi: 10.1016/j.jpsychires.2014.09.019
Fabiani S, Pinto B, Bonuccelli U, Bruschi F. Neurobiological studies on the relationship between toxoplasmosis and neuropsychiatric diseases. J Neurol Sci. 2015;351:3–8.
pubmed: 25725931
doi: 10.1016/j.jns.2015.02.028
Ngoungou EB, Bhalla D, Nzoghe A, Dardé ML, Preux PM. Toxoplasmosis and epilepsy–systematic review and meta-analysis. PLoS Negl Trop Dis. 2015;9:e0003525.
pubmed: 25695802
pmcid: 4335039
doi: 10.1371/journal.pntd.0003525
Melo MB, Nguyen QP, Cordeiro C, Hassan MA, Yang N, McKell R, et al. Transcriptional analysis of murine macrophages infected with different Toxoplasma strains identifies novel regulation of host signaling pathways. PLoS Pathog. 2013;9:1–17.
doi: 10.1371/journal.ppat.1003779
Zhang AM, Shen Q, Li M, Xu XC, Chen H, Cai YH, et al. Comparative studies of macrophage-biased responses in mice to infection with Toxoplasma gondii ToxoDB #9 strains of different virulence isolated from China. Parasit Vectors. 2013;6:308.
pubmed: 24499603
pmcid: 4029513
doi: 10.1186/1756-3305-6-308
Salvador-Guillouët F, Ajzenberg D, Chaillou-Opitz S, Saint-Paul MC, Dunais B, Dellamonica P, et al. Severe pneumonia during primary infection with an atypical strain of Toxoplasma gondii in an immunocompetent young man. J Infect. 2006;53:e47–50.
pubmed: 16352339
doi: 10.1016/j.jinf.2005.10.026
Ajzenberg D, Cogné N, Paris L, Bessières MH, Thulliez P, Filisetti D, et al. Genotype of 86 Toxoplasma gondii isolates associated with human congenital toxoplasmosis, and correlation with clinical findings. J Infect Dis. 2002;186:684–9.
pubmed: 12195356
doi: 10.1086/342663
Elzeky SM, Nabih N, Abdel-Magied AA, Abdelmagid DS, Handoussa AE, Hamouda MM. Seroprevalence and genetic characterization of Toxoplasma gondii among children with neurodevelopmental disorders in Egypt. J Trop Med. 2022;2022:2343679.
pubmed: 35669051
pmcid: 9166983
doi: 10.1155/2022/2343679
Rico-Torres CP, Vargas-Villavicencio JA, Correa D. Is Toxoplasma gondii type related to clinical outcome in human congenital infection? Systematic and critical review. Eur J Clin Microbiol Infect Dis. 2016;35:1079–108.
pubmed: 27146878
doi: 10.1007/s10096-016-2656-2
Dao A, Fortier B, Soete M, Plenat F, Dubremetz JF. Successful reinfection of chronically infected mice by a different Toxoplasma gondii genotype. Int J Parasitol. 2001;31:63–5.
pubmed: 11165272
doi: 10.1016/S0020-7519(00)00151-X
Gavinet MF, Robert F, Firtion G, Delouvrier E, Hennequin C, Maurin JR, et al. Congenital toxoplasmosis due to maternal reinfection during pregnancy. J Clin Microbiol. 1997;35:1276–7.
pubmed: 9114425
pmcid: 232747
doi: 10.1128/jcm.35.5.1276-1277.1997
Valdès V, Legagneur H, Watrin V, Paris L, Hascoët JM. Congenital toxoplasmosis due to maternal reinfection during pregnancy. Arch Pediatr. 2011;18:761–3.
pubmed: 21600743
doi: 10.1016/j.arcped.2011.04.011
de Aloise DA, Coura-Vital W, Carneiro M, Rodrigues MV, Toscano GAS, Silva RB, et al. Association between ocular toxoplasmosis and APEX1 and MYD88 polymorphism. Acta Trop. 2021;221:106006.
pubmed: 34118207
doi: 10.1016/j.actatropica.2021.106006
Lebas F, Ducrocq S, Mucignat V, Paris L, Mégier P, Baudon JJ, et al. Congenital toxoplasmosis: infection during pregnancy in an immune and immunocompetent woman. Arch Pediatr. 2004;11:926–8.
pubmed: 15288083
doi: 10.1016/j.arcped.2004.04.017
Silveira C, Ferreira R, Muccioli C, Nussenblatt R, Belfort R. Toxoplamosis transmitted to a newborn from the mother infected 20 years earlier. Am J Ophthalmol. 2003;136:370–1.
pubmed: 12888070
doi: 10.1016/S0002-9394(03)00191-0
Freyre A, Falcón J, Mendez J, Correa O, Morgades D, Rodríguez A. An investigation of sterile immunity against toxoplasmosis in rats. Exp Parasitol. 2004;107:14–9.
pubmed: 15208033
doi: 10.1016/j.exppara.2004.04.005
Dzitko K, Staczek P, Gatkowska J, Dlugonska H. Toxoplasma gondii: serological recognition of reinfection. Exp Parasitol. 2006;112:134–7.
pubmed: 16289467
doi: 10.1016/j.exppara.2005.09.010
Franco PS, da Silva NM, de Barbosa BF, Gomes AO, Ietta F, Shwab EK, et al. Calomys callosus chronically infected by Toxoplasma gondii clonal type II strain and reinfected by Brazilian strains is not able to prevent vertical transmission. Front Microbiol. 2015;6:181.
pubmed: 25806028
pmcid: 4354403
doi: 10.3389/fmicb.2015.00181
Elbez-Rubinstein A, Ajzenberg D, Dardé ML, Cohen R, Dumètre A, Year H, et al. Congenital toxoplasmosis and reinfection during pregnancy: case report, strain characterization, experimental model of reinfection, and review. J Infect Dis. 2009;199:280–5.
pubmed: 19032062
doi: 10.1086/595793
Bessa GL, Costa JGL, Rêgo WMF, Baraviera RCA, Pinto LV, Lopes REN, et al. Tissue dissemination and humoral response after experimental reinfection with atypical Toxoplasma gondii strains obtained from congenital human toxoplasmosis in Brazil. Exp Parasitol. 2019;207:107781.
pubmed: 31626796
doi: 10.1016/j.exppara.2019.107781
Jensen KDC, Camejo A, Melo MB, Cordeiro C, Julien L, Grotenbreg GM, et al. Toxoplasma gondii superinfection and virulence during secondary infection correlate with the exact ROP5/ROP18 allelic combination. MBio. 2015;6:e02280.
pubmed: 25714710
pmcid: 4358003
doi: 10.1128/mBio.02280-14
Carme B, Demar M, Ajzenberg D, Dardé ML. Severe acquired toxoplasmosis caused by wild cycle of Toxoplasma gondii, French Guiana. Emerg Infect Dis. 2009;15:656–8.
pubmed: 19331765
pmcid: 2671434
doi: 10.3201/eid1504.081306
Blaizot R, Nabet C, Blanchet D, Martin E, Mercier A, Dardé ML, et al. Pediatric Amazonian toxoplasmosis caused by atypical strains in French Guiana, 2002–2017. J Pediatr Infect Dis. 2019;38:39–42.
doi: 10.1097/INF.0000000000002130
Demar M, Ajzenberg D, Maubon D, Djossou F, Panchoe D, Punwasi W, et al. Fatal outbreak of human toxoplasmosis along the Maroni river: epidemiological, clinical, and parasitological aspects. Clin Infect Dis. 2007;45:e88–95.
pubmed: 17806043
doi: 10.1086/521246
Blaizot R, Nabet C, Laghoe L, Faivre B, Escotte-Binet S, Djossou F, et al. Outbreak of Amazonian toxoplasmosis: a One Health investigation in a remote Amerindian community. Front Cell Infect Microbiol. 2020;10:401.
pubmed: 33042853
pmcid: 7516351
doi: 10.3389/fcimb.2020.00401
Dubey JP, Sundar N, Gennari SM, Minervino AHH, Farias NAR, Ruas JL, et al. Biologic and genetic comparison of Toxoplasma gondii isolates in free-range chickens from the northern Pará state and the southern state Rio Grande do Sul, Brazil revealed highly diverse and distinct parasite populations. Vet Parasitol. 2007;143:182–8.
pubmed: 16982151
doi: 10.1016/j.vetpar.2006.08.024
Ramos TS, de Jesus Pena HF, Santos Junior AG, Santos LMJF, Cademartori BG, Oliveira S, et al. Characterization of Toxoplasma gondii isolates from herds of sheep in southern Brazil reveals the archetypal type II genotype and new non-archetypal genotypes. Parasitol Int. 2018;67:59–63.
doi: 10.1016/j.parint.2017.03.004
Paraboni MLR, Costa DF, Silveira C, Gava R, Pereira-Chioccola VL, Belfort-Jr R, et al. A new strain of Toxoplasma gondii circulating in southern Brazil. J Parasit Dis. 2020;44:248–52.
pubmed: 32174731
doi: 10.1007/s12639-019-01155-x
Silva RC, Langoni H, Su C, Silva AV. Genotypic characterization of Toxoplasma gondii in sheep from Brazilian slaughterhouses: new atypical genotypes and the clonal type II strain identified. Vet Parasitol. 2011;175:173–7.
pubmed: 20970257
doi: 10.1016/j.vetpar.2010.09.021
Dubey JP, Rajendran C, Costa DGC, Ferreira LR, Kwok OCH, Qu D, et al. New Toxoplasma gondii genotypes isolated from free-range chickens from the Fernando de Noronha, Brazil: unexpected findings. J Parasitol. 2010;96:709–12.
pubmed: 20486738
doi: 10.1645/GE-2425.1
Melo RPB, Almeida JC, Lima DCV, Pedrosa CM, Magalhães FJR, Alcântara AM, et al. Atypical Toxoplasma gondii genotype in feral cats from the Fernando de Noronha Island, northeastern Brazil. Vet Parasitol. 2016;224:92–5.
pubmed: 27270396
doi: 10.1016/j.vetpar.2016.05.023
Soares RM, Silveira LH, Silva AV, Ragozo A, Galli S, Lopes EG, et al. Genotyping of Toxoplasma gondii isolates from free range chickens in the Pantanal area of Brazil. Vet Parasitol. 2011;178:29–34.
pubmed: 21255933
doi: 10.1016/j.vetpar.2010.12.037
Bezerra RA, Carvalho FS, Guimarães LA, Rocha DS, Maciel DM, Wenceslau AA, et al. Genetic characterization of Toxoplasma gondii isolates from pigs intended for human consumption in Brazil. Vet Parasitol. 2012;189:153–61.
pubmed: 22677134
doi: 10.1016/j.vetpar.2012.04.036
Maciel BM, Moura RLS, Carvalho FS, Costa EA, Albuquerque GR. Identification and genetic characterization of a new Brazilian genotype of Toxoplasma gondii from sheep intended for human consumption. Parasitol Int. 2014;63:567–70.
pubmed: 24631791
doi: 10.1016/j.parint.2014.03.001
Rocha DS, Nilsson MG, Maciel BM, Pena HFJ, Alves BF, Silva AV, et al. Genetic diversity of Toxoplasma gondii isolates from free-range chickens in Bahia, Brazil. J Parasitol. 2018;104:377–82.
pubmed: 29757702
doi: 10.1645/18-9
Pena HFJ, Vitaliano SN, Beltrame MAV, Pereira FEL, Gennari SM, Soares RM. PCR-RFLP genotyping of Toxoplasma gondii from chickens from Espírito Santo state, Southeast region, Brazil: new genotypes and a new SAG3 marker allele. Vet Parasitol. 2013;192:111–7.
pubmed: 23116899
doi: 10.1016/j.vetpar.2012.10.004
Higa LT, Garcia JL, Su C, Rossinid RC, Falavigna-Guilhermee AL. Toxoplasma gondii genotypes isolated from pregnant women with follow-up of infected children in southern Brazil. Trans R Soc Trop Med Hyg. 2014;108:244–6.
pubmed: 24554488
doi: 10.1093/trstmh/tru014
Vieira FEG, Sasse JP, Minutti AF, Miura AC, Barros LD, Cardim ST, et al. Toxoplasma gondii: prevalence and characterization of new genotypes in free-range chickens from south Brazil. Parasitol Res. 2018;117:681–8.
pubmed: 29344803
doi: 10.1007/s00436-017-5730-5
Vitaliano SN, Soares HS, Minervino AHH, Santos ALQ, Werther K, Marvulo MFV, et al. Genetic characterization of Toxoplasma gondii from Brazilian wildlife revealed abundant new genotypes. Int J Parasitol Parasites Wildl. 2014;3:276–83.
pubmed: 25426424
pmcid: 4241539
doi: 10.1016/j.ijppaw.2014.09.003
Sousa IC, Pena HFJ, Santos LS, Gennari SM, Costa FN. First isolation and genotyping of Toxoplasma gondii from free-range chickens on São Luis island, Maranhão state, Brazil, with a new genotype described. Vet Parasitol. 2016;223:159–64.
pubmed: 27198795
doi: 10.1016/j.vetpar.2016.04.041
Feitosa TF, Ribeiro Vilela VL, de Almeida-Neto JL, Santos A, Morais DF, et al. High genetic diversity in Toxoplasma gondii isolates from pigs at slaughterhouses in Paraíba state, northeastern Brazil: circulation of new genotypes and Brazilian clonal lineages. Vet Parasitol. 2017;244:76–80.
pubmed: 28917322
doi: 10.1016/j.vetpar.2017.07.017
Pena HFJ, Alves BF, Soares HS, Oliveira S, Ferreiras MN, Bricarello PA, et al. Free-range chickens from Santa Catarina state, southern Brazil, as asymptomatic intermediate hosts for Toxoplasma gondii clonal type I and typical Brazilian genotypes. Vet Parasitol Reg Stud Reports. 2018;13:55–9.
pubmed: 31014890
Melo RPB, Wanderley FS, Porto WJN, Pedrosa CM, Hamilton CM, Oliveira MHGS, et al. Description of an atypical Toxoplasma gondii isolate from a case of congenital toxoplasmosis in northeastern Brazil. Parasitol Res. 2020;119:2727–31.
pubmed: 32518965
doi: 10.1007/s00436-020-06746-9
Rezende HHA, Igreja JASL, Gomes-Júnior AR, Melo JO, Garcia JL, Martins FDC, et al. Molecular characterization of Toxoplasma gondii isolates from free-range chickens reveals new genotypes in Goiânia, Goiás, Brazil. Rev Bras Parasitol Vet. 2021;30:e000321.
pubmed: 34076043
doi: 10.1590/s1984-29612021029
Behnke MS, Fentress SJ, Mashayekhi M, Li LX, Taylor GA, Sibley LD. The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18. PLoS Pathog. 2012;8:e1002992.
pubmed: 23144612
pmcid: 3493473
doi: 10.1371/journal.ppat.1002992
Butcher BA, Fox BA, Rommereim LM, Kim SG, Maurer KJ, Yarovinsky F, et al. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control. PLoS Pathog. 2011;7:e1002236.
pubmed: 21931552
pmcid: 3169547
doi: 10.1371/journal.ppat.1002236
Du J, An R, Chen L, Shen Y, Chen Y, Cheng L, et al. Toxoplasma gondii virulence factor ROP18 inhibits the host NK-κB pathway by promoting P65 degradation. J Biol Chem. 2014;289:12578–92.
pubmed: 24648522
pmcid: 4007449
doi: 10.1074/jbc.M113.544718