Surveillance of SARS-CoV-2 RNA in wastewater matrix: a review.
COVID-19
Epidemiology
Molecular detection
SARS-CoV-2
Surveillance
Wastewater
Journal
Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350
Informations de publication
Date de publication:
20 Dec 2023
20 Dec 2023
Historique:
received:
16
05
2023
accepted:
22
11
2023
medline:
20
12
2023
pubmed:
20
12
2023
entrez:
20
12
2023
Statut:
epublish
Résumé
SARS-CoV-2 is the agent responsible for the global pandemic sickness, COVID-19. It is an enveloped virus that belongs to the family Coronaviridae. Recent studies have revealed the fecal shedding of the virus and have been found to enter wastewater and aquatic systems. Prolonged viral presence in fecal samples is a common observation in the reported literature. Survival of the virus in the recipient environment could be a crucial factor that influences its fecal-oral transmission. The detection of a novel coronavirus in wastewater opportunity has potential for environmental surveillance at the community or population level. Such a surveillance system can enable the early detection of disease outbreaks in zones with pre-symptomatic/asymptomatic patients and act as a complementary tool for continuous monitoring of quarantine zones. In contrast to developed regions, resource constraints in underdeveloped communities coupled with different sanitation settings may pose a challenge to wastewater sampling and surveillance. To begin, this review summarizes the literature on the presence of SARS-CoV-2 in feces. The approaches for viral extraction, concentration, and detection in wastewater matrices are then highlighted. Finally, investigations on wastewater-based epidemiology for SARS-CoV-2 surveillance are reviewed.
Identifiants
pubmed: 38117369
doi: 10.1007/s10661-023-12178-6
pii: 10.1007/s10661-023-12178-6
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
67Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Ahmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., O’Brien, J. W., Choi, P. M., Kitajima, M., Simpson, S. L., Li, J., amp, et al. (2020). First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Science of the Total Environment, 728,
Amirian, E. S. (2020). Potential fecal transmission of SARS-CoV-2: Current evidence and implications for public health. International Journal of Infectious Diseases, 95, 363–370.
doi: 10.1016/j.ijid.2020.04.057
Arora, S., Nag, A., Sethi, J., Rajvanshi, J., Saxena, S., Shrivastava, S. K., & Gupta, A. B. (2020). Sewage surveillance for the presence of SARS-CoV-2 genome as a useful wastewater based epidemiology (WBE) tracking tool in India. Water Science and Technology, 82(12), 2823–2836.
doi: 10.2166/wst.2020.540
Baldovin, T., Amoruso, I., Fonzo, M., Buja, A., Baldo, V., Cocchio, S., & Bertoncello, C. (2021). SARS-CoV-2 RNA detection and persistence in wastewater samples: An experimental network for COVID-19 environmental surveillance in Padua, Veneto Region (NE Italy). Science of The Total Environment, 760,
Bar-Or, I., Yaniv, K., Shagan, M., Ozer, E., Weil, M., Indenbaum, V., Elul, M., Erster, O., Mendelson, E., Mannasse, B., & et al. (2021). Regressing SARS-CoV-2 sewage measurements onto COVID-19 burden in the population: A proof-of-concept for quantitative environmental surveillance. Frontiers in Public Health, 9
Barceló, D. (2020). Wastewater-based epidemiology to monitor COVID-19 outbreak: Present and future diagnostic methods to be in your radar. Case Studies in Chemical and Environmental Engineering, 2,
Belouhova, M., Peykov, S., Stefanova, V., & Topalova, Y. (2023). Comparison of two methods for SARS-CoV-2 detection in wastewater: A case study from Sofia, Bulgaria. Water, 15(4), 658.
doi: 10.3390/w15040658
Cervantes-Aviles, P., Moreno-Andrade, I., & Carrillo-Reyes, J. (2021). Approaches applied to detect SARS-CoV-2 in wastewater and perspectives post-COVID-19. Journal of Water Process Engineering, 40,
Chen, Y., Chen, L., Deng, Q., Zhang, G., Wu, K., Ni, L., Yang, Y., Liu, B., Wang, W., Wei, C., et al. (2020). The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. Journal of Medical Virology, 92(7), 833–840.
doi: 10.1002/jmv.25825
Daou, M., Kannout, H., Khalili, M., Almarei, M., Alhashami, M., Alhalwachi, Z., Alshamsi, F., Bataineh, Tahseen Al, M., Azzam Kayasseh, M., Al Khajeh, A., & amp, et al. (2022). Analysis of SARS-CoV-2 viral loads in stool samples and nasopharyngeal swabs from COVID-19 patients in the United Arab Emirates. PLoS One, 17(9)
D’Aoust, P. M., Mercier, E., Montpetit, D., Jia, J. J., Alexandrov, I., Neault, N., Baig, A. T., Mayne, J., Zhang, X., Alain, T., amp, et al. (2021). Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence. Water Research, 188,
Daughton, C. G. (2020). Wastewater surveillance for population-wide COVID-19: The present and future. Science of the Total Environment, 736,
De Oliveira, L. C., Torres-Franco, A. F., Lopes, B. C., da Silva Santos, B. S. Á., Costa, E. A., Costa, M. S., Reis, M. T. P., Melo, M. C., Polizzi, R. B., Teixeira, M. M., amp, et al. (2021). Viability of SARS-CoV-2 in river water and wastewater at different temperatures and solids content. Water Research, 195,
Dharmadhikari, T., Rajput, V., Yadav, R., Boargaonkar, R., Patil, D., Kale, S., Kamble, S. P., Dastager, S. G., & Dharne, M. S. (2022). High throughput sequencing based direct detection of SARS-CoV-2 fragments in wastewater of Pune, West India. Science of the Total Environment, 807,
Elsamadony, M., Fujii, M., Miura, T., & Watanabe, T. (2021). Possible transmission of viruses from contaminated human feces and sewage: Implications for SARS-CoV-2. Science of the Total Environment, 755,
Florindo, H. F., Kleiner, R., Vaskovich-Koubi, D., Acúrcio, R. C., Carreira, B., Yeini, E., Tiram, G., Liubomirski, Y., & Satchi-Fainaro, R. (2020). Immune-mediated approaches against COVID-19. Nature Nanotechnology, 15(8), 630–645.
Foladori, P., Cutrupi, F., Segata, N., Manara, S., Pinto, F., Malpei, F., Bruni, L., & La Rosa, G. (2020). SARS-CoV-2 from faeces to wastewater treatment: What do we know a review. Science of the Total Environment, 743,
Graham, J. P., & Polizzotto, M. L. (2013). Pit latrines and their impacts on groundwater quality: A systematic review. Environmental Health Perspectives, 121(5), 521–530.
doi: 10.1289/ehp.1206028
Green, H., Wilder, M., Collins, M., Fenty, A., Gentile, K., Kmush, B.L., Zeng, T., Middleton, F.A., & Larsen, D.A. (2020). Quantification of SARS-CoV-2 and cross-assembly phage (crAsphage) from wastewater to monitor coronavirus transmission within communities. MedRxiv
Hamouda, M., Mustafa, F., Maraqa, M., Rizvi, T., & Hassan, A. A. (2021). Wastewater surveillance for SARS-CoV-2: Lessons learnt from recent studies to define future applications. Science of The Total Environment, 759,
Heller, L., Mota, C. R., & Greco, D. B. (2020). COVID-19 faecal-oral transmission: Are we asking the right questions? Science of the Total Environment, 729,
Hillary, L. S., Maher, K. H., Lucaci, A., Thorpe, J., Distaso, M. A., Gaze, W. H., Paterson, S., Burke, T., Connor, T. R., McDonald, J. E., amp, et al. (2021). Monitoring SARS-CoV-2 in municipal wastewater to evaluate the success of lockdown measures for controlling COVID-19 in the UK. Water Research, 200,
Jiang, X., Luo, M., Zou, Z., Wang, X., Chen, C., & Qiu, J. (2020). Asymptomatic SARS-CoV-2 infected case with viral detection positive in stool but negative in nasopharyngeal samples lasts for 42 days. Journal of Medical Virology, 92(10), 1807.
doi: 10.1002/jmv.25941
Kaya, D., Niemeier, D., Ahmed, W., & Kjellerup, B. V. (2022). Evaluation of multiple analytical methods for SARS-CoV-2 surveillance in wastewater samples. Science of the Total Environment, 808,
Kumar, M., Patel, A. K., Shah, A. V., Raval, J., Rajpara, N., Joshi, M., & Joshi, C. G. (2020). First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2. Science of The Total Environment, 746,
Kumar, M., Srivastava, V., Mazumder, P., Deka, J. P., Gupta, S., Goswami, R., Mutiyar, P. K., Dave, S., Mahanta, C., Ramanathan, A., amp, et al. (2022). Spectre of SARS-CoV-2 RNA in the ambient urban waters of Ahmedabad and Guwahati: A tale of two Indian cities. Environmental Research, 204,
Lavania, M., Joshi, M. S., Ranshing, S. S., Potdar, V. A., Shinde, M., Chavan, N., Jadhav, S. M., Sarkale, P., Mohandas, S., Sawant, P. M., amp, et al. (2022). Prolonged shedding of SARS-CoV-2 in feces of COVID-19 positive patients: Trends in genomic variation in first and second wave. Frontiers in Medicine, 9,
Lescure, F. X., Bouadma, L., Nguyen, D., Parisey, M., Wicky, P. H., Behillil, S., Gaymard, A., Bouscambert-Duchamp, M., Donati, F., Le Hingrat, Q., et al. (2020). Clinical and virological data of the first cases of COVID-19 in Europe: A case series. The Lancet Infectious Diseases, 20(6), 697–706.
doi: 10.1016/S1473-3099(20)30200-0
Lodder, W., & de Roda Husman, A. M. (2020). SARS-CoV-2 in wastewater: Potential health risk, but also data source. The Lancet Gastroenterology & Hepatology, 5(6), 533–534.
doi: 10.1016/S2468-1253(20)30087-X
Lu, D., Huang, Z., Luo, J., Zhang, X., & Sha, S. (2020). Primary concentration-the critical step in implementing the wastewater based epidemiology for the COVID-19 pandemic: A mini-review. Science of The Total Environment, 747,
Medema, G., Heijnen, L., Elsinga, G., Italiaander, R., & Brouwer, A. (2020). Presence of SARS-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environmental Science & Technology Letters, 7(7), 511–516.
Nasseri, S., Yavarian, J., Baghani, A. N., Azad, T. M., Nejati, A., Nabizadeh, R., Hadi, M., Jandaghi, N. Z. S., Vakili, B., Vaghefi, K. A., et al. (2021). The presence of SARS-CoV-2 in raw and treated wastewater in 3 cities of Iran: Tehran, Qom and Anzali during coronavirus disease 2019 (COVID-19) outbreak. Journal of Environmental Health Science and Engineering, 19(1), 573–584.
doi: 10.1007/s40201-021-00629-6
Oteng-Peprah, M., Acheampong, M. A., & DeVries, N. K. (2018). Greywater characteristics, treatment systems, reuse strategies and user perception-A review. Water, Air, & Soil Pollution, 229(8), 1–16.
doi: 10.1007/s11270-018-3909-8
Palmquist, H., & Hanæus, J. (2005). Hazardous substances in separately collected grey-and blackwater from ordinary Swedish households. Science of the Total Environment, 348(1–3), 151–163.
doi: 10.1016/j.scitotenv.2004.12.052
Randazzo, W., Truchado, P., Cuevas-Ferrando, E., Simón, P., Allende, A., & Sánchez, G. (2020). SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Research, 181,
Rector, A., Bloemen, M., Thijssen, M., Delang, L., Raymenants, J., Thibaut, J., Pussig, B., Fondu, L., Aertgeerts, B., Van Ranst, M., amp, et al. (2023). Monitoring of SARS-CoV-2 concentration and circulation of variants of concern in wastewater of Leuven, Belgium. Journal of Medical Virology, 95(2)
Rimoldi, S. G., Stefani, F., Gigantiello, A., Polesello, S., Comandatore, F., Mileto, D., Maresca, M., Longobardi, C., Mancon, A., Romeri, F., amp, et al. (2020). Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Science of the Total Environment, 744,
Rocha, A. Y., Verbyla, M. E., Sant, K. E., & Mladenov, N. (2022). Detection, quantification, and simplified wastewater surveillance model of SARS-CoV-2 RNA in the Tijuana River. ACS Es &t Water, 2(11), 2134–2143.
doi: 10.1021/acsestwater.2c00062
Rusiñol, M., Martínez-Puchol, S., Forés, E., Itarte, M., Girones, R., & Bofill-Mas, S. (2020). Concentration methods for the quantification of coronavirus and other potentially pandemic enveloped virus from wastewater. Current Opinion in Environmental Science & Health, 17, 21–28.
doi: 10.1016/j.coesh.2020.08.002
Santos, I.d.A., Grosche, V.R., Bergamini, F.R.G., Sabino-Silva, R., & Jardim, A.C.G. (2020). Antivirals against coronaviruses: Candidate drugs for SARS-CoV-2 treatment? Frontiers in Microbiology, 11, 1818.
Sherchan, S. P., Shahin, S., Ward, L. M., Tandukar, S., Aw, T. G., Schmitz, B., Ahmed, W., & Kitajima, M. (2020). First detection of SARS-CoV-2 RNA in wastewater in North America: A study in Louisiana, USA. Science of The Total Environment, 743,
Street, R., Malema, S., Mahlangeni, N., & Mathee, A. (2020). Wastewater surveillance for COVID-19: An African perspective. Science of The Total Environment, 743,
Tanhaei, M., Mohebbi, S. R., Hosseini, S. M., Rafieepoor, M., Kazemian, S., Ghaemi, A., Shamloei, S., Mirjalali, H., Asadzadeh Aghdaei, H., & Zali, M. R. (2021). The first detection of SARS-CoV-2 RNA in the wastewater of Tehran, Iran. Environmental Science and Pollution Research, 28(29), 38629–38636.
doi: 10.1007/s11356-021-13393-9
Thompson, J. R., Nancharaiah, Y. V., Gu, X., Lee, W. L., Rajal, V. B., Haines, M. B., Girones, R., Ng, L. C., Alm, E. J., & Wuertz, S. (2020). Making waves: Wastewater surveillance of SARS-CoV-2 for population-based health management. Water Research, 184,
Tran, H. N., Le, G. T., Nguyen, D. T., Juang, R. S., Rinklebe, J., Bhatnagar, A., Lima, E. C., Iqbal, H. M., Sarmah, A. K., & Chao, H. P. (2021). SARS-CoV-2 coronavirus in water and wastewater: A critical review about presence and concern. Environmental Research, 193,
Trottier, J., Darques, R., Mouheb, N. A., Partiot, E., Bakhache, W., Deffieu, M. S., & Gaudin, R. (2020). Post-lockdown detection of SARS-CoV-2 RNA in the wastewater of Montpellier, France. One Health, 10,
Velavan, T. P., & Meyer, C. G. (2020). The COVID-19 epidemic. Tropical Medicine & International Health, 25(3), 278.
doi: 10.1111/tmi.13383
Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., et al. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. Jama, 323(11), 1061–1069.
doi: 10.1001/jama.2020.1585
Westhaus, S., Weber, F. A., Schiwy, S., Linnemann, V., Brinkmann, M., Widera, M., Greve, C., Janke, A., Hollert, H., Wintgens, T., amp, et al. (2021). Detection of SARS-CoV-2 in raw and treated wastewater in Germany-suitability for COVID-19 surveillance and potential transmission risks. Science of The Total Environment, 751,
Whitney, O. N., Kennedy, L. C., Fan, V. B., Hinkle, A., Kantor, R., Greenwald, H., Crits-Christoph, A., Al-Shayeb, B., Chaplin, M., Maurer, A. C., et al. (2021). Sewage, salt, silica, and SARS-CoV-2 (4S): An economical kit-free method for direct capture of SARS-CoV-2 RNA from wastewater. Environmental Science & Technology, 55(8), 4880–4888.
doi: 10.1021/acs.est.0c08129
Wölfel, R., Corman, V. M., Guggemos, W., Seilmaier, M., Zange, S., Müller, M. A., Niemeyer, D., Jones, T. C., Vollmar, P., Rothe, C., et al. (2020). Virological assessment of hospitalized patients with COVID-2019. Nature, 581(7809), 465–469.
doi: 10.1038/s41586-020-2196-x
Wu, D., Wu, T., Liu, Q., & Yang, Z. (2020). The SARS-CoV-2 outbreak: What we know. International Journal of Infectious Diseases, 94, 44–48.
Wu, Y., Guo, C., Tang, L., Hong, Z., Zhou, J., Dong, X., Yin, H., Xiao, Q., Tang, Y., Qu, X., et al. (2020). Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. The lancet Gastroenterology & Hepatology, 5(5), 434–435.
Wurtzer, S., Marechal, V., Mouchel, J., Maday, Y., Teyssou, R., Richard, E., Almayrac, J., & Moulin, eL. (2020). Evaluation of lockdown effect on SARS-CoV-2 dynamics through viral genome quantification in waste water, greater Paris, France, 5 march to 23 April 2020. Eurosurveillance, 25(50), 2000776.
doi: 10.2807/1560-7917.ES.2020.25.50.2000776
Xiao, F., Tang, M., Zheng, X., Liu, Y., Li, X., & Shan, H. (2020). Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology, 158(6), 1831–1833.
doi: 10.1053/j.gastro.2020.02.055
Zhang, D., Ling, H., Huang, X., Li, J., Li, W., Yi, C., Zhang, T., Jiang, Y., He, Y., Deng, S., amp, et al. (2020). Potential spreading risks and disinfection challenges of medical wastewater by the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Science of the Total Environment, 741,
Zhang, N., Gong, Y., Meng, F., Bi, Y., Yang, P., & Wang, F. (2020). Virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients. MedRxiv
Zhang, Y., Chen, C., Zhu, S., Shu, C., Wang, D., Song, J., Song, Y., Zhen, W., Feng, Z., Wu, G., et al. (2020). Isolation of 2019-NCoV from a stool specimen of a laboratory-confirmed case of the coronavirus disease 2019 (COVID-19). China CDC Weekly, 2(8), 123–124.