Dapagliflozin administration for 1 year promoted kidney enlargement in patient with ADPKD.

Autosomal-dominant polycystic kidney disease Sodium-glucose cotransporter-2 inhibitors Total kidney volume

Journal

CEN case reports
ISSN: 2192-4449
Titre abrégé: CEN Case Rep
Pays: Japan
ID NLM: 101636244

Informations de publication

Date de publication:
20 Dec 2023
Historique:
received: 04 06 2023
accepted: 11 11 2023
medline: 20 12 2023
pubmed: 20 12 2023
entrez: 20 12 2023
Statut: aheadofprint

Résumé

To date, there is insufficient evidence regarding use of sodium-glucose cotransporter-2 (SGLT2) inhibitors for patients with autosomal-dominant polycystic kidney disease (ADPKD), as such cases have been excluded from previous clinical trials exploring the kidney protection effects of such medications. Here, findings of an ADPKD patient who received dapagliflozin, a selective SGLT2 inhibitor, for 1 year are presented. A 38-year-old woman with a family history of ADPKD wished for treatment with dapagliflozin. After starting administration at 10 mg/day, total kidney volume (TKV) continued to increase, from 1641 to 1764 mL after 84 days and then to 2297 mL after 340 days. The estimated glomerular filtration rate (eGFR) was also decreased from 67.3 to 56.2 mL/min/1.73 m

Identifiants

pubmed: 38117458
doi: 10.1007/s13730-023-00840-4
pii: 10.1007/s13730-023-00840-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Japanese Society of Nephrology.

Références

Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet. 2007;369(9569):1287–301. https://doi.org/10.1016/S0140-6736(07)60601-1 .
doi: 10.1016/S0140-6736(07)60601-1 pubmed: 17434405
Ong AC, Devuyst O, Knebelmann B, Walz G, Diseases E-EWGfIK. Autosomal dominant polycystic kidney disease: the changing face of clinical management. Lancet. 2015;385(9981):1993–2002. https://doi.org/10.1016/S0140-6736(15)60907-2 .
doi: 10.1016/S0140-6736(15)60907-2 pubmed: 26090645
Dachy A, Decuypere JP, Vennekens R, Jouret F, Mekahli D. Is autosomal dominant polycystic kidney disease an early sweet disease? Pediatr Nephrol. 2022;37(9):1945–55. https://doi.org/10.1007/s00467-021-05406-z .
doi: 10.1007/s00467-021-05406-z pubmed: 34988697
Nowak KL, Hopp K. Metabolic reprogramming in autosomal dominant polycystic kidney disease: evidence and therapeutic potential. Clin J Am Soc Nephrol. 2020;15(4):577–84. https://doi.org/10.2215/CJN.13291019 .
doi: 10.2215/CJN.13291019 pubmed: 32086281 pmcid: 7133124
Warner G, Hein KZ, Nin V, Edwards M, Chini CC, Hopp K, et al. Food restriction ameliorates the development of polycystic kidney disease. J Am Soc Nephrol. 2016;27(5):1437–47. https://doi.org/10.1681/ASN.2015020132 .
doi: 10.1681/ASN.2015020132 pubmed: 26538633
Kipp KR, Rezaei M, Lin L, Dewey EC, Weimbs T. A mild reduction of food intake slows disease progression in an orthologous mouse model of polycystic kidney disease. Am J Physiol Renal Physiol. 2016;310(8):F726–31. https://doi.org/10.1152/ajprenal.00551.2015 .
doi: 10.1152/ajprenal.00551.2015 pubmed: 26764208 pmcid: 4835927
Torres JA, Kruger S, Broderick C, Amarlkhagva T, Agrawal S, Dodam JR, et al. Ketosis ameliorates renal cyst growth in polycystic kidney disease. Cell Metab. 2019;30(6):1007–23. https://doi.org/10.1016/j.cmet.2019.09.012 .
doi: 10.1016/j.cmet.2019.09.012 pubmed: 31631001 pmcid: 6904245
Nowak KL, Steele C, Gitomer B, Wang W, Ouyang J, Chonchol MB. Overweight and obesity and progression of ADPKD. Clin J Am Soc Nephrol. 2021;16(6):908–15. https://doi.org/10.2215/CJN.16871020 .
doi: 10.2215/CJN.16871020 pubmed: 34117082 pmcid: 8216617
Hopp K, Catenacci VA, Dwivedi N, Kline TL, Wang W, You Z, et al. Weight loss and cystic disease progression in autosomal dominant polycystic kidney disease. iScience. 2022;25(1):103697. https://doi.org/10.1016/j.isci.2021.103697 .
doi: 10.1016/j.isci.2021.103697 pubmed: 35059607
Heerspink HJL, Stefansson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–46. https://doi.org/10.1056/NEJMoa2024816 .
doi: 10.1056/NEJMoa2024816 pubmed: 32970396
The E-KCG, Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, et al. Empagliflozin in patients with chronic kidney disease. N Engl J Med. 2023;388(2):117–27. https://doi.org/10.1056/NEJMoa2204233 .
doi: 10.1056/NEJMoa2204233
Morioka F, Nakatani S, Uedono H, Tsuda A, Mori K, Emoto M. Short-term dapagliflozin administration in autosomal dominant polycystic kidney disease—a retrospective single-arm case series study. J Clin Med. 2023;12(19):6341. https://doi.org/10.3390/jcm12196341 .
doi: 10.3390/jcm12196341 pubmed: 37834985 pmcid: 10573882
Irazabal MV, Rangel LJ, Bergstralh EJ, Osborn SL, Harmon AJ, Sundsbak JL, et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol. 2015;26(1):160–72. https://doi.org/10.1681/ASN.2013101138 .
doi: 10.1681/ASN.2013101138 pubmed: 24904092
Kapoor S, Rodriguez D, Riwanto M, Edenhofer I, Segerer S, Mitchell K, et al. Effect of sodium-glucose cotransport inhibition on polycystic kidney disease progression in PCK rats. PLoS ONE. 2015;10(4): e0125603. https://doi.org/10.1371/journal.pone.0125603 .
doi: 10.1371/journal.pone.0125603 pubmed: 25927597 pmcid: 4416041
Li SR, Gulieva RE, Helms L, Cruz NM, Vincent T, Fu H, et al. Glucose absorption drives cystogenesis in a human organoid-on-chip model of polycystic kidney disease. Nat Commun. 2022;13(1):7918. https://doi.org/10.1038/s41467-022-35537-2 .
doi: 10.1038/s41467-022-35537-2 pubmed: 36564419 pmcid: 9789147
Devuyst O, Chapman AB, Gansevoort RT, Higashihara E, Perrone RD, Torres VE, et al. Urine osmolality, response to tolvaptan, and outcome in autosomal dominant polycystic kidney disease: results from the TEMPO 3:4 trial. J Am Soc Nephrol. 2017;28(5):1592–602. https://doi.org/10.1681/ASN.2016040448 .
doi: 10.1681/ASN.2016040448 pubmed: 27920153
Wang X, Zhang S, Liu Y, Spichtig D, Kapoor S, Koepsell H, et al. Targeting of sodium-glucose cotransporters with phlorizin inhibits polycystic kidney disease progression in Han:SPRD rats. Kidney Int. 2013;84(5):962–8. https://doi.org/10.1038/ki.2013.199 .
doi: 10.1038/ki.2013.199 pubmed: 23715121
Neumiller JJ, White JR Jr, Campbell RK. Sodium-glucose co-transport inhibitors: progress and therapeutic potential in type 2 diabetes mellitus. Drugs. 2010;70(4):377–85. https://doi.org/10.2165/11318680-000000000-00000 .
doi: 10.2165/11318680-000000000-00000 pubmed: 20205482
Rieg T, Masuda T, Gerasimova M, Mayoux E, Platt K, Powell DR, et al. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol. 2014;306(2):F188–93. https://doi.org/10.1152/ajprenal.00518.2013 .
doi: 10.1152/ajprenal.00518.2013 pubmed: 24226519
Sinha F, Federlein A, Biesold A, Schwarzfischer M, Krieger K, Schweda F, et al. Empagliflozin increases kidney weight due to increased cell size in the proximal tubule S3 segment and the collecting duct. Front Pharmacol. 2023;14:1118358. https://doi.org/10.3389/fphar.2023.1118358 .
doi: 10.3389/fphar.2023.1118358 pubmed: 37033639 pmcid: 10076569
Wang X, Wu Y, Ward CJ, Harris PC, Torres VE. Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008;19(1):102–8. https://doi.org/10.1681/ASN.2007060688 .
doi: 10.1681/ASN.2007060688 pubmed: 18032793 pmcid: 2391034
Watanabe S, Sawa N, Mizuno H, Yamanouchi M, Suwabe T, Hoshino J, et al. Development of osmotic vacuolization of proximal tubular epithelial cells following treatment with sodium-glucose transport protein 2 inhibitors in type II diabetes mellitus patients-3 case reports. CEN Case Rep. 2021;10(4):563–9. https://doi.org/10.1007/s13730-021-00609-7 .
doi: 10.1007/s13730-021-00609-7 pubmed: 34021486 pmcid: 8494847
Ferrannini G, Hach T, Crowe S, Sanghvi A, Hall KD, Ferrannini E. Energy balance after sodium-glucose cotransporter 2 inhibition. Diabetes Care. 2015;38(9):1730–5. https://doi.org/10.2337/dc15-0355 .
doi: 10.2337/dc15-0355 pubmed: 26180105 pmcid: 4542276
Perkins BA, Cherney DZ, Partridge H, Soleymanlou N, Tschirhart H, Zinman B, et al. Sodium-glucose cotransporter 2 inhibition and glycemic control in type 1 diabetes: results of an 8-week open-label proof-of-concept trial. Diabetes Care. 2014;37(5):1480–3. https://doi.org/10.2337/dc13-2338 .
doi: 10.2337/dc13-2338 pubmed: 24595630
Takata T, Isomoto H. Pleiotropic effects of sodium-glucose cotransporter-2 inhibitors: renoprotective mechanisms beyond glycemic control. Int J Mol Sci. 2021;22(9):4374. https://doi.org/10.3390/ijms22094374 .
doi: 10.3390/ijms22094374 pubmed: 33922132 pmcid: 8122753

Auteurs

Shinya Nakatani (S)

Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan. nakatani-s@omu.ac.jp.

Fumiyuki Morioka (F)

Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.

Hideki Uedono (H)

Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.

Akihiro Tsuda (A)

Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.

Katsuhito Mori (K)

Department of Nephrology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.

Masanori Emoto (M)

Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
Department of Nephrology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.

Classifications MeSH