Monovalent metal ion binding promotes the first transesterification reaction in the spliceosome.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
20 Dec 2023
20 Dec 2023
Historique:
received:
20
06
2023
accepted:
01
12
2023
medline:
21
12
2023
pubmed:
21
12
2023
entrez:
20
12
2023
Statut:
epublish
Résumé
Cleavage and formation of phosphodiester bonds in nucleic acids is accomplished by large cellular machineries composed of both protein and RNA. Long thought to rely on a two-metal-ion mechanism for catalysis, structure comparisons revealed many contain highly spatially conserved second-shell monovalent cations, whose precise function remains elusive. A recent high-resolution structure of the spliceosome, essential for pre-mRNA splicing in eukaryotes, revealed a potassium ion in the active site. Here, we employ biased quantum mechanics/ molecular mechanics molecular dynamics to elucidate the function of this monovalent ion in splicing. We discover that the K
Identifiants
pubmed: 38123540
doi: 10.1038/s41467-023-44174-2
pii: 10.1038/s41467-023-44174-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8482Subventions
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : AIRC IG 24514
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : Giovanni Fraviga
Organisme : Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
ID : P1-0017, J1-3019
Organisme : Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
ID : P1-0017
Organisme : Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
ID : J1-3019
Organisme : Wellcome Trust (Wellcome)
ID : 220212/Z/20/Z
Organisme : Wellcome Trust (Wellcome)
ID : 220212/Z/20/Z
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 950278
Informations de copyright
© 2023. The Author(s).
Références
Steitz, T. A. & Steitz, J. A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl Acad. Sci. USA 90, 6498–6502 (1993).
pubmed: 8341661
doi: 10.1073/pnas.90.14.6498
Nakamura, T. et al. Polymerase η make a phosphodiester bond. Nature 487, 196–201 (2012).
pubmed: 22785315
doi: 10.1038/nature11181
Samara, N. L. & Yang, W. Cation trafficking propels RNA hydrolysis. Nat. Struct. Mol. Biol. 25, 715–721 (2018).
pubmed: 30076410
doi: 10.1038/s41594-018-0099-4
Sgrignani, J. & Magistrato, A. QM/MM MD simulations on the enzymatic pathway of the human flap endonuclease (hFEN1) elucidating common cleavage pathways to RNase H enzymes. ACS Catal. 5, 3864–3875 (2015).
doi: 10.1021/acscatal.5b00178
Auffinger, P., Ennifar, E. & D’Ascenzo, L. Deflating the RNA Mg
doi: 10.1261/rna.076067.120
Rozov, A. et al. Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nat. Commun. 10, 2519 (2019).
pubmed: 31175275
doi: 10.1038/s41467-019-10409-4
Genna, V., Colombo, M., De Vivo, M. & Marcia, M. Second-shell basic residues expand the two-metal-ion architecture of DNA and RNA processing enzymes. Structure 26, 40–50.e2 (2018).
pubmed: 29225080
doi: 10.1016/j.str.2017.11.008
Borišek, J. et al. Atomic-level mechanism of Pre-mRNA splicing in health and disease. Acc. Chem. Res. 54, 144–154 (2021).
pubmed: 33317262
doi: 10.1021/acs.accounts.0c00578
Galej, W. P., Toor, N., Newman, A. J. & Nagai, K. Molecular mechanism and evolution of nuclear pre-mRNA and group II intron splicing: insights from cryo-electron microscopy structures. Chem. Rev. 118, 4156–4176 (2018).
pubmed: 29377672
doi: 10.1021/acs.chemrev.7b00499
Casalino, L., Palermo, G., Spinello, A., Rothlisberger, U. & Magistrato, A. All-atom simulations disentangle the functional dynamics underlying gene maturation in the intron lariat spliceosome. Proc. Natl Acad. Sci. Usa. 115, 6584–6589 (2018).
pubmed: 29891649
doi: 10.1073/pnas.1802963115
Saltalamacchia, A. et al. Decrypting the information exchange pathways across the spliceosome. Machin. J. Am. Chem. Soc. 142, 8403–8411 (2020).
doi: 10.1021/jacs.0c02036
Kastner, B., Will, C. L., Stark, H. & Lührmann, R. Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harb. Perspect. Biol. 11, a032417 (2019).
pubmed: 30765414
doi: 10.1101/cshperspect.a032417
Fica, S. M. Cryo-EM snapshots of the human spliceosome reveal structural adaptions for splicing regulation. Curr. Opin. Struct. Biol. 65, 139–148 (2020).
pubmed: 32717639
doi: 10.1016/j.sbi.2020.06.018
Zhang, L., Vielle, A., Espinosa, S. & Zhao, R. RNAs in the spliceosome: insight from cryoEM structures. WIREs. RNA 10, e1523 (2019).
pubmed: 30729694
Tholen, J. & Galej, W. P. Structural studies of the spliceosome: bridging the gaps. Curr. Opin. Struct. Biol. 77, 102461 (2022).
pubmed: 36116369
doi: 10.1016/j.sbi.2022.102461
Wan, R., Bai, R., Yan, C., Lei, J. & Shi, Y. Structures of the catalytically activated yeast spliceosome reveal the mechanism of branching. Cell 177, 339–351.e13 (2019).
pubmed: 30879786
doi: 10.1016/j.cell.2019.02.006
Liu, Y.-C., Chen, H.-C., Wu, N.-Y. & Cheng, S.-C. A novel splicing factor, Yju2, is associated with NTC and acts after Prp2 in promoting the first catalytic reaction of pre-mRNA splicing. Mol. Cell. Biol. 27, 5403–5413 (2007).
pubmed: 17515604
doi: 10.1128/MCB.00346-07
Tseng, C. K., Chung, C. S., Chen, H. C. & Cheng, S. C. A central role of Cwc25 in spliceosome dynamics during the catalytic phase of pre-mRNA splicing. RNA 23, 546–556 (2017).
pubmed: 28057857
doi: 10.1261/rna.059204.116
Fica, S. M. et al. RNA catalyses nuclear pre-mRNA splicing. Nature 503, 229–234 (2013).
pubmed: 24196718
doi: 10.1038/nature12734
Wilkinson, M. E. et al. Postcatalytic spliceosome structure reveals mechanism of 3′–splice site selection. Science 358, 1283–1288 (2017).
pubmed: 29146871
doi: 10.1126/science.aar3729
Borišek, J. & Magistrato, A. All-Atom Simulations Decrypt the Molecular Terms of RNA Catalysis in the Exon-Ligation Step of the Spliceosome. ACS Catal. 10, 5328–5334 (2020).
doi: 10.1021/acscatal.0c00390
Wilkinson, M. E., Fica, S. M., Galej, W. P. & Nagai, K. Structural basis for conformational equilibrium of the catalytic spliceosome. Mol. Cell 81, 1439–1452.e9 (2021).
pubmed: 33705709
doi: 10.1016/j.molcel.2021.02.021
Borišek, J., Aupič, J. & Magistrato, A. Establishing the catalytic and regulatory mechanism of RNA‐based machineries. WIREs Comput. Mol. Sci. 13, e1643 (2023).
doi: 10.1002/wcms.1643
Casalino, L., Palermo, G., Rothlisberger, U. & Magistrato, A. Who activates the nucleophile in ribozyme catalysis? An answer from the splicing mechanism of group II introns. J. Am. Chem. Soc. 138, 10374–10377 (2016).
pubmed: 27309711
doi: 10.1021/jacs.6b01363
Toor, N., Keating, K. S., Taylor, S. D. & Pyle, A. M. Crystal structure of a self-spliced group II intron. Science 320, 77–82 (2008).
pubmed: 18388288
doi: 10.1126/science.1153803
Huang, W., Huang, Y., Xu, J. & Liao, J Lou. How does the spliceosome catalyze intron lariat formation? Insights from quantum mechanics/molecular mechanics free-energy simulations. J. Phys. Chem. B 123, 6049–6055 (2019).
pubmed: 31267745
doi: 10.1021/acs.jpcb.9b04377
Gagné, O. C. & Hawthorne, F. C. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 72, 602–625 (2016).
doi: 10.1107/S2052520616008507
Brás, N. F. et al. Analyses of cobalt-ligand and potassium-ligand bond lengths in metalloproteins: trends and patterns. J. Mol. Model. 20, 1–14 (2014).
doi: 10.1007/s00894-014-2271-z
de Visser, S. P., Mukherjee, G., Ali, H. S. & Sastri, C. V. Local charge distributions, electric dipole moments, and local electric fields influence reactivity patterns and guide regioselectivities in α-ketoglutarate-dependent non-heme iron dioxygenases. Acc. Chem. Res. 55, 65–74 (2022).
pubmed: 34915695
doi: 10.1021/acs.accounts.1c00538
Dixit, V. A., Warwicker, J. & Visser, S. P. How do metal ions modulate the rate‐determining electron‐transfer step in cytochrome P450 reactions? Chemistry 26, 15270–15281 (2020).
pubmed: 32761661
doi: 10.1002/chem.202003024
Visser, S. P. Second‐coordination sphere effects on selectivity and specificity of heme and nonheme iron enzymes. Chemistry 26, 5308–5327 (2020).
pubmed: 31804749
doi: 10.1002/chem.201905119
Duan, X. & Scheiner, S. Energetics, proton transfer rates, and kinetic isotope effects in bent hydrogen bonds. J. Am. Chem. Soc. 114, 5849–5856 (1992).
doi: 10.1021/ja00040a055
Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997 (2014).
pubmed: 24505130
doi: 10.1126/science.1247997
Ivanov, I., Tainer, J. A. & McCammon, J. A. Unraveling the three-metal-ion catalytic mechanism of the DNA repair endonuclease IV. Proc. Natl Acad. Sci. USA 104, 1465–1470 (2007).
pubmed: 17242363
doi: 10.1073/pnas.0603468104
Borišek, J. & Magistrato, A. An expanded two-Zn
doi: 10.1021/acscatal.0c05594
Manigrasso, J. et al. Visualizing group II intron dynamics between the first and second steps of splicing. Nat. Commun. 11, 1–15 (2020).
doi: 10.1038/s41467-020-16741-4
Marcia, M. & Pyle, A. M. Visualizing group II intron catalysis through the stages of splicing. Cell 151, 497–507 (2012).
pubmed: 23101623
doi: 10.1016/j.cell.2012.09.033
Manigrasso, J., De Vivo, M. & Palermo, G. Controlled trafficking of multiple and diverse cations prompts nucleic acid hydrolysis. ACS Catal. 11, 8786–8797 (2021).
pubmed: 35145762
doi: 10.1021/acscatal.1c01825
Henning-Knechtel, A., Thirumalai, D. & Kirmizialtin, S. Differences in ion-RNA binding modes due to charge density variations explain the stability of RNA in monovalent salts. Sci. Adv. 8, 1190 (2022).
doi: 10.1126/sciadv.abo1190
Hardy, S. F., Grabowski, P. J., Padgett, R. A. & Sharp, P. A. Cofactor requirements of splicing of purified messenger RNA precursors. Nature 308, 375–377 (1984).
pubmed: 6709044
doi: 10.1038/308375a0
Galej, W. P. et al. Cryo-EM structure of the spliceosome immediately after branching. Nature 537, 197–201 (2016).
pubmed: 27459055
doi: 10.1038/nature19316
Grubmüller, H., Groll, V. & Tavan, P. Solvate | Max Planck Institute for Multidisciplinary Sciences. https://www.mpinat.mpg.de/grubmueller/solvate (1996).
Pearlman, D. A. et al. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91, 1–41 (1995).
doi: 10.1016/0010-4655(95)00041-D
Anandakrishnan, R., Aguilar, B. & Onufriev, A. V. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 40, W537–W541 (2012).
pubmed: 22570416
doi: 10.1093/nar/gks375
Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).
pubmed: 26574453
doi: 10.1021/acs.jctc.5b00255
Zgarbová, M. et al. Refinement of the Cornell et al. Nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 7, 2886–2902 (2011).
pubmed: 21921995
doi: 10.1021/ct200162x
Krepl, M. et al. Can we execute stable microsecond-scale atomistic simulations of protein-RNA complexes? J. Chem. Theory Comput. 11, 1220–1243 (2015).
pubmed: 26579770
doi: 10.1021/ct5008108
Li, P., Roberts, B. P., Chakravorty, D. K. & Merz, K. M. Rational design of particle mesh ewald compatible lennard-jones parameters for +2 metal cations in explicit solvent. J. Chem. Theory Comput. 9, 2733–2748 (2013).
pubmed: 23914143
doi: 10.1021/ct400146w
Li, P., Song, L. F. & Merz, K. M. Systematic parameterization of monovalent ions employing the nonbonded model. J. Chem. Theory Comput. 11, 1645–1657 (2015).
pubmed: 26574374
doi: 10.1021/ct500918t
Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2, 1–7 (2015).
Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).
doi: 10.1063/1.470117
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).
pubmed: 17212484
doi: 10.1063/1.2408420
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).
doi: 10.1063/1.328693
Hutter, J., Iannuzzi, M., Schiffmann, F. & Vandevondele, J. Cp2k: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).
doi: 10.1002/wcms.1159
Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).
doi: 10.1103/PhysRevB.37.785
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).
doi: 10.1103/PhysRevA.38.3098
VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 1–10 (2007).
doi: 10.1063/1.2770708
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
pubmed: 20423165
doi: 10.1063/1.3382344
Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).
pubmed: 26583988
doi: 10.1021/ct400341p
McGibbon, R. T. et al. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015).
pubmed: 26488642
doi: 10.1016/j.bpj.2015.08.015
Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 32, 2319–2327 (2011).
pubmed: 21500218
doi: 10.1002/jcc.21787
Aupič, J., Borišek, J., Fica, S. M., Galej, W. P. & Magistrato, A. Supporting Files for Article ‘Monovalent Metal Ion Binding Promotes the First Transesterificationreaction in the Spliceosome’. https://doi.org/10.5281/zenodo.10089929 (2023).
Laio, A., VandeVondele, J. & Rothlisberger, U. D-RESP: dynamically generated electrostatic potential derived charges from quantum mechanics/molecular mechanics simulations. J. Phys. Chem. B 106, 7300–7307 (2002).
doi: 10.1021/jp0143138
Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).
pubmed: 28836357
doi: 10.1002/pro.3280
Carter, E. A., Ciccotti, G., Hynes, J. T. & Kapral, R. Constrained reaction coordinate dynamics for the simulation of rare events. Chem. Phys. Lett. 156, 472–477 (1989).
doi: 10.1016/S0009-2614(89)87314-2
Sprik, M. & Ciccotti, G. Free energy from constrained molecular dynamics. J. Chem. Phys. 109, 7737–7744 (1998).
doi: 10.1063/1.477419
Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms to Applications. (Academic Press, San Diego, 2002).