Mechanical control of neural plate folding by apical domain alteration.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
20 Dec 2023
20 Dec 2023
Historique:
received:
08
02
2023
accepted:
23
11
2023
medline:
21
12
2023
pubmed:
21
12
2023
entrez:
20
12
2023
Statut:
epublish
Résumé
Vertebrate neural tube closure is associated with complex changes in cell shape and behavior, however, the relative contribution of these processes to tissue folding is not well understood. At the onset of Xenopus neural tube folding, we observed alternation of apically constricted and apically expanded cells. This apical domain heterogeneity was accompanied by biased cell orientation along the anteroposterior axis, especially at neural plate hinges, and required planar cell polarity signaling. Vertex models suggested that dispersed isotropically constricting cells can cause the elongation of adjacent cells. Consistently, in ectoderm, cell-autonomous apical constriction was accompanied by neighbor expansion. Thus, a subset of isotropically constricting cells may initiate neural plate bending, whereas a 'tug-of-war' contest between the force-generating and responding cells reduces its shrinking along the body axis. This mechanism is an alternative to anisotropic shrinking of cell junctions that are perpendicular to the body axis. We propose that apical domain changes reflect planar polarity-dependent mechanical forces operating during neural folding.
Identifiants
pubmed: 38123550
doi: 10.1038/s41467-023-43973-x
pii: 10.1038/s41467-023-43973-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8475Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
ID : R35GM122492
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
ID : R01NS100759
Informations de copyright
© 2023. The Author(s).
Références
Schoenwolf, G. C. & Smith, J. L. Mechanisms of neurulation: traditional viewpoint and recent advances. Development 109, 243–270 (1990).
pubmed: 2205465
doi: 10.1242/dev.109.2.243
Wilde, J. J., Petersen, J. R. & Niswander, L. Genetic, epigenetic, and environmental contributions to neural tube closure. Annu. Rev. Genet. 48, 583–611 (2014).
pubmed: 25292356
pmcid: 4649936
doi: 10.1146/annurev-genet-120213-092208
Nikolopoulou, E., Galea, G. L., Rolo, A., Greene, N. D. E. & Copp, A. J. Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 144, 552–566 (2017).
pubmed: 28196803
doi: 10.1242/dev.145904
Schroeder, T. E. Mechanisms of morphogenesis: the embryonic neural tube. Int. J. Neurosci. 2, 183–197 (1971).
pubmed: 5161312
doi: 10.3109/00207457109147001
Sutherland, A., Keller, R. & Lesko, A. Convergent extension in mammalian morphogenesis. Semin. Cell Dev. Biol. 100, 199–211 (2020).
pubmed: 31734039
doi: 10.1016/j.semcdb.2019.11.002
Wallingford, J. B., Niswander, L. A., Shaw, G. M. & Finnell, R. H. The continuing challenge of understanding, preventing, and treating neural tube defects. Science 339, 1222002 (2013).
pubmed: 23449594
pmcid: 3677196
doi: 10.1126/science.1222002
Baldwin, A. T., Kim, J. H., Seo, H. & Wallingford, J. B. Global analysis of cell behavior and protein dynamics reveals region-specific roles for Shroom3 and N-cadherin during neural tube closure. Elife 11 https://doi.org/10.7554/eLife.66704 (2022).
Butler, M. T. & Wallingford, J. B. Spatial and temporal analysis of PCP protein dynamics during neural tube closure. Elife 7 https://doi.org/10.7554/eLife.36456 (2018).
Davidson, L. A. & Keller, R. E. Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension. Development 126, 4547–4556 (1999).
pubmed: 10498689
doi: 10.1242/dev.126.20.4547
Nishimura, T., Honda, H. & Takeichi, M. Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149, 1084–1097 (2012).
pubmed: 22632972
doi: 10.1016/j.cell.2012.04.021
Rolo, A., Skoglund, P. & Keller, R. Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB. Dev. Biol. 327, 327–338 (2009).
pubmed: 19121300
doi: 10.1016/j.ydbio.2008.12.009
Williams, M., Yen, W., Lu, X. & Sutherland, A. Distinct apical and basolateral mechanisms drive planar cell polarity-dependent convergent extension of the mouse neural plate. Dev. Cell 29, 34–46 (2014).
pubmed: 24703875
pmcid: 4120093
doi: 10.1016/j.devcel.2014.02.007
Lewis, W. H. Mechanics of invagination. Anat. Rec. 97, 139–156 (1947).
pubmed: 20284907
doi: 10.1002/ar.1090970203
Odell, G. M., Oster, G., Alberch, P. & Burnside, B. The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev. Biol. 85, 446–462 (1981).
pubmed: 7196351
doi: 10.1016/0012-1606(81)90276-1
Jacobson, A. G. & Gordon, R. Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulation. J. Exp. Zool. 197, 191–246 (1976).
pubmed: 965908
doi: 10.1002/jez.1401970205
Suzuki, M., Morita, H. & Ueno, N. Molecular mechanisms of cell shape changes that contribute to vertebrate neural tube closure. Dev. Growth Differ. 54, 266–276 (2012).
pubmed: 22524600
doi: 10.1111/j.1440-169X.2012.01346.x
Christodoulou, N. & Skourides, P. A. Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during Xenopus neural tube closure. Development 149 https://doi.org/10.1242/dev.200358 (2022).
Gray, R. S., Roszko, I. & Solnica-Krezel, L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev. Cell 21, 120–133 (2011).
pubmed: 21763613
pmcid: 3166557
doi: 10.1016/j.devcel.2011.06.011
Peng, Y. & Axelrod, J. D. Asymmetric protein localization in planar cell polarity: mechanisms, puzzles, and challenges. Curr. Top. Dev. Biol. 101, 33–53 (2012).
pubmed: 23140624
pmcid: 4854750
doi: 10.1016/B978-0-12-394592-1.00002-8
Sokol, S. Y. Mechanotransduction during vertebrate neurulation. Curr. Top. Dev. Biol. 117, 359–376 (2016).
pubmed: 26969989
doi: 10.1016/bs.ctdb.2015.11.036
Yang, Y. & Mlodzik, M. Wnt-Frizzled/planar cell polarity signaling: cellular orientation by facing the wind (Wnt). Annu. Rev. Cell Dev. Biol. 31, 623–646 (2015).
pubmed: 26566118
pmcid: 4673888
doi: 10.1146/annurev-cellbio-100814-125315
Ybot-Gonzalez, P. et al. Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 134, 789–799 (2007).
pubmed: 17229766
doi: 10.1242/dev.000380
Kibar, Z. et al. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat. Genet. 28, 251–255 (2001).
pubmed: 11431695
doi: 10.1038/90081
Ossipova, O., Chuykin, I., Chu, C. W. & Sokol, S. Y. Vangl2 cooperates with Rab11 and Myosin V to regulate apical constriction during vertebrate gastrulation. Development 142, 99–107 (2015).
pubmed: 25480917
pmcid: 4299144
doi: 10.1242/dev.111161
Ossipova, O. et al. Role of Rab11 in planar cell polarity and apical constriction during vertebrate neural tube closure. Nat. Commun. 5, 3734 (2014).
pubmed: 24818582
doi: 10.1038/ncomms4734
Ossipova, O., Kim, K. & Sokol, S. Y. Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling. Biol. Open 4, 722–730 (2015).
pubmed: 25910938
pmcid: 4467192
doi: 10.1242/bio.201511676
Farhadifar, R., Roper, J. C., Aigouy, B., Eaton, S. & Julicher, F. The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007).
pubmed: 18082406
doi: 10.1016/j.cub.2007.11.049
Fletcher, A. G., Osterfield, M., Baker, R. E. & Shvartsman, S. Y. Vertex models of epithelial morphogenesis. Biophys. J. 106, 2291–2304 (2014).
pubmed: 24896108
pmcid: 4052277
doi: 10.1016/j.bpj.2013.11.4498
Honda, H. & Eguchi, G. How much does the cell boundary contract in a monolayered cell sheet? J. Theor. Biol. 84, 575–588 (1980).
pubmed: 7431941
doi: 10.1016/S0022-5193(80)80021-X
Martin, A. C., Gelbart, M., Fernandez-Gonzalez, R., Kaschube, M. & Wieschaus, E. F. Integration of contractile forces during tissue invagination. J. Cell Biol. 188, 735–749 (2010).
pubmed: 20194639
pmcid: 2835944
doi: 10.1083/jcb.200910099
Doubrovinski, K., Tchoufag, J. & Mandadapu, K. A simplified mechanism for anisotropic constriction in Drosophila mesoderm. Development 145 https://doi.org/10.1242/dev.167387 (2018).
Spahn, P. & Reuter, R. A vertex model of Drosophila ventral furrow formation. PLoS One 8, e75051 (2013).
pubmed: 24066163
pmcid: 3774731
doi: 10.1371/journal.pone.0075051
Fierling, J. et al. Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation. Nat. Commun. 13, 3348 (2022).
pubmed: 35688832
pmcid: 9187723
doi: 10.1038/s41467-022-30493-3
Holcomb, M. C. et al. Mechanical feedback and robustness of apical constrictions in Drosophila embryo ventral furrow formation. PLoS Comput Biol. 17, e1009173 (2021).
pubmed: 34228708
pmcid: 8284804
doi: 10.1371/journal.pcbi.1009173
Jason Gao, G. J., Holcomb, M. C., Thomas, J. H. & Blawzdziewicz, J. Embryo as an active granular fluid: stress-coordinated cellular constriction chains. J. Phys. Condens. Matter 28, 414021 (2016).
pubmed: 27545101
doi: 10.1088/0953-8984/28/41/414021
Misra, M., Audoly, B., Kevrekidis, I. G. & Shvartsman, S. Y. Shape transformations of epithelial shells. Biophys. J. 110, 1670–1678 (2016).
pubmed: 27074691
pmcid: 4833838
doi: 10.1016/j.bpj.2016.03.009
Okuda, S., Inoue, Y., Eiraku, M., Adachi, T. & Sasai, Y. Vertex dynamics simulations of viscosity-dependent deformation during tissue morphogenesis. Biomech. Model Mechanobiol. 14, 413–425 (2015).
pubmed: 25227116
doi: 10.1007/s10237-014-0613-5
Bielmeier, C. et al. Interface contractility between differently fated cells drives cell elimination and cyst formation. Curr. Biol. 26, 563–574 (2016).
pubmed: 26853359
pmcid: 5282066
doi: 10.1016/j.cub.2015.12.063
Inoue, Y. et al. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus. Biomech. Model Mechanobiol. 15, 1733–1746 (2016).
pubmed: 27193152
pmcid: 5106510
doi: 10.1007/s10237-016-0794-1
Suzuki, M. et al. Distinct intracellular Ca(2+) dynamics regulate apical constriction and differentially contribute to neural tube closure. Development 144, 1307–1316 (2017).
pubmed: 28219946
Matsuda, M., Chu, C. W. & Sokol, S. Y. Lmo7 recruits myosin II heavy chain to regulate actomyosin contractility and apical domain size in Xenopus ectoderm. Development 149 https://doi.org/10.1242/dev.200236 (2022).
Haigo, S. L., Hildebrand, J. D., Harland, R. M. & Wallingford, J. B. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr. Biol. 13, 2125–2137 (2003).
pubmed: 14680628
doi: 10.1016/j.cub.2003.11.054
Hildebrand, J. D. & Soriano, P. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99, 485–497 (1999).
pubmed: 10589677
doi: 10.1016/S0092-8674(00)81537-8
Poznanski, A., Minsuk, S., Stathopoulos, D. & Keller, R. Epithelial cell wedging and neural trough formation are induced planarly in Xenopus, without persistent vertical interactions with mesoderm. Dev. Biol. 189, 256–269 (1997).
pubmed: 9299118
doi: 10.1006/dbio.1997.8678
Morita, H. et al. Cell movements of the deep layer of non-neural ectoderm underlie complete neural tube closure in Xenopus. Development 139, 1417–1426 (2012).
pubmed: 22378637
doi: 10.1242/dev.073239
Keller, R. & Sutherland, A. Convergent extension in the amphibian, Xenopus laevis. Curr. Top. Dev. Biol. 136, 271–317 (2020).
pubmed: 31959291
doi: 10.1016/bs.ctdb.2019.11.013
Mancini, P., Ossipova, O. & Sokol, S. Y. The dorsal blastopore lip is a source of signals inducing planar cell polarity in the Xenopus neural plate. Biol. Open 10 https://doi.org/10.1242/bio.058761 (2021).
Hirano, S., Mii, Y., Charras, G. & Michiue, T. Alignment of the cell long axis by unidirectional tension acts cooperatively with Wnt signalling to establish planar cell polarity. Development 149 https://doi.org/10.1242/dev.200515 (2022).
Vijayraghavan, D. S. & Davidson, L. A. Mechanics of neurulation: from classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube. Birth Defects Res. 109, 153–168 (2017).
pubmed: 27620928
doi: 10.1002/bdra.23557
Zhou, J., Pal, S., Maiti, S. & Davidson, L. A. Force production and mechanical accommodation during convergent extension. Development 142, 692–701 (2015).
pubmed: 25670794
pmcid: 4325376
doi: 10.1242/dev.116533
Christodoulou, N. & Skourides, P. A. Somitic mesoderm morphogenesis is necessary for neural tube closure during Xenopus development. Front. Cell Dev. Biol. 10, 1091629 (2022).
pubmed: 36699010
doi: 10.3389/fcell.2022.1091629
Chanet, S. et al. Actomyosin meshwork mechanosensing enables tissue shape to orient cell force. Nat. Commun. 8, 15014 (2017).
pubmed: 28504247
pmcid: 5440693
doi: 10.1038/ncomms15014
Heisenberg, C. P. & Bellaiche, Y. Forces in tissue morphogenesis and patterning. Cell 153, 948–962 (2013).
pubmed: 23706734
doi: 10.1016/j.cell.2013.05.008
Nestor-Bergmann, A., Goddard, G., Woolner, S. & Jensen, O. E. Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model. Math. Med. Biol. 35, 1–27 (2018).
pubmed: 28992197
doi: 10.1093/imammb/dqx008
Nestor-Bergmann, A., Johns, E., Woolner, S. & Jensen, O. E. Mechanical characterization of disordered and anisotropic cellular monolayers. Phys. Rev. E 97, 052409 (2018).
pubmed: 29906905
pmcid: 7613005
doi: 10.1103/PhysRevE.97.052409
McGreevy, E. M., Vijayraghavan, D., Davidson, L. A. & Hildebrand, J. D. Shroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure. Biol. Open 4, 186–196 (2015).
pubmed: 25596276
pmcid: 4365487
doi: 10.1242/bio.20149589
Sokol, S. Y. Analysis of dishevelled signalling pathways during Xenopus development. Curr. Biol. 6, 1456–1467 (1996).
pubmed: 8939601
doi: 10.1016/S0960-9822(96)00750-6
Harland, R. Neural induction. Curr. Opin. Genet. Dev. 10, 357–362 (2000).
pubmed: 10889069
doi: 10.1016/S0959-437X(00)00096-4
Bray, S. J. Notch signalling in context. Nat. Rev. Mol. Cell Biol. 17, 722–735 (2016).
pubmed: 27507209
doi: 10.1038/nrm.2016.94
Sweeton, D., Parks, S., Costa, M. & Wieschaus, E. Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations. Development 112, 775–789 (1991).
pubmed: 1935689
doi: 10.1242/dev.112.3.775
Xie, S. & Martin, A. C. Intracellular signalling and intercellular coupling coordinate heterogeneous contractile events to facilitate tissue folding. Nat. Commun. 6, 7161 (2015).
pubmed: 26006267
doi: 10.1038/ncomms8161
Bhide, S. et al. Mechanical competition alters the cellular interpretation of an endogenous genetic program. J. Cell Biol. 220 https://doi.org/10.1083/jcb.202104107 (2021).
Baldwin, A., Popov, I. K., Keller, R., Wallingford, J. & Chang, C. The RhoGEF protein Plekhg5 regulates medioapical and junctional actomyosin dynamics of apical constriction during Xenopus gastrulation. Mol. Biol. Cell 34, ar64 (2023).
pubmed: 37043306
pmcid: 10295481
doi: 10.1091/mbc.E22-09-0411
Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin): a Systematical and Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis. (Garland Pub., 1994).
Peng, H. B. Xenopus laevis: practical uses in cell and molecular biology. Solutions and protocols. Methods Cell Biol. 36, 657–662 (1991).
pubmed: 1811156
Harland, R. M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36, 685–695 (1991).
pubmed: 1811161
doi: 10.1016/S0091-679X(08)60307-6
Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nature Methods https://doi.org/10.1038/s41592-022-01663-4 (2022).
van der Walt, S. et al. scikit-image: image processing in Python. Peerj 2 10.7717/peerj.453 (2014). ARTN e453
Ulicna, K., Vallardi, G., Charras, G. & Lowe, A. R. Automated deep lineage tree analysis using a Bayesian single cell tracking approach. Front. Comput. Sci. 3 https://doi.org/10.3389/fcomp.2021.734559 (2021). ARTN 734559
Derganc, J., Svetina, S. & Zeks, B. Equilibrium mechanics of monolayered epithelium. J. Theor. Biol. 260, 333–339 (2009).
pubmed: 19576229
doi: 10.1016/j.jtbi.2009.06.021
Krajnc, M., Dasgupta, S., Ziherl, P. & Prost, J. Fluidization of epithelial sheets by active cell rearrangements. Phys. Rev. E 98, 022409 (2018).
pubmed: 30253464
doi: 10.1103/PhysRevE.98.022409
Rozman, J., Krajnc, M. & Ziherl, P. Collective cell mechanics of epithelial shells with organoid-like morphologies. Nat. Commun. 11, 3805 (2020).
pubmed: 32732886
pmcid: 7393134
doi: 10.1038/s41467-020-17535-4
Rozman, J., Krajnc, M. & Ziherl, P. Morphologies of compressed active epithelial monolayers. Eur. Phys. J. E Soft Matter 44, 99 (2021).
pubmed: 34287727
doi: 10.1140/epje/s10189-021-00094-x
Priti, A. et al. Syncytial germline architecture is actively maintained by contraction of an internal actomyosin corset. Nat. Commun. 9, 4694 (2018).
pubmed: 30410005
pmcid: 6224597
doi: 10.1038/s41467-018-07149-2
Zahn, N. et al. Normal Table of Xenopus development: a new graphical resource. Development 149 https://doi.org/10.1242/dev.200356 (2022).