Microbes control Drosophila germline stem cell increase and egg maturation through hormonal pathways.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
20 Dec 2023
20 Dec 2023
Historique:
received:
27
05
2023
accepted:
01
12
2023
medline:
21
12
2023
pubmed:
21
12
2023
entrez:
20
12
2023
Statut:
epublish
Résumé
Reproduction is highly dependent on environmental and physiological factors including nutrition, mating stimuli and microbes. Among these factors, microbes facilitate vital functions for host animals such as nutritional intake, metabolic regulation, and enhancing fertility under poor nutrition conditions. However, detailed molecular mechanisms by which microbes control germline maturation, leading to reproduction, remain largely unknown. In this study, we show that environmental microbes exert a beneficial effect on Drosophila oogenesis by promoting germline stem cell (GSC) proliferation and subsequent egg maturation via acceleration of ovarian cell division and suppression of apoptosis. Moreover, insulin-related signaling is not required; rather, the ecdysone pathway is necessary for microbe-induced increase of GSCs and promotion of egg maturation, while juvenile hormone contributes only to increasing GSC numbers, suggesting that hormonal pathways are activated at different stages of oogenesis. Our findings reveal that environmental microbes can enhance host reproductivity by modulating host hormone release and promoting oogenesis.
Identifiants
pubmed: 38123715
doi: 10.1038/s42003-023-05660-x
pii: 10.1038/s42003-023-05660-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1287Subventions
Organisme : NOVARTIS Foundation (Japan) for the Promotion of Science (NOVARTIS Foundation (Japan))
ID : J211503001
Organisme : Hawaii Community Foundation (HCF)
ID : 19CON-95452
Informations de copyright
© 2023. The Author(s).
Références
Yoshinari, Y., Kurogi, Y., Ameku, T. & Niwa, R. Endocrine regulation of female germline stem cells in the fruit fly Drosophila melanogaster. Curr. Opin. Insect Sci. 31, 14–19 (2019).
pubmed: 31109668
doi: 10.1016/j.cois.2018.07.001
Armstrong, A. R. Ovarian function. Reproduction, 159, R69–R82 (2020).
Leitão-Gonçalves, R. et al. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol. 15, 1–29 (2017).
doi: 10.1371/journal.pbio.2000862
Wong, A. C. N., Dobson, A. J. & Douglas, A. E. Gut microbiota dictates the metabolic response of Drosophila to diet. J. Exp. Biol. 217, 1894–1901 (2014).
pubmed: 24577449
pmcid: 4037322
Gnainsky, Y. et al. Systemic regulation of host energy and oogenesis by microbiome-derived mitochondrial coenzymes. Cell Rep. 34, 108583 (2021).
Wong, A. C. N. et al. The host as the driver of the microbiota in the gut and external environment of Drosophila melanogaster. Appl. Environ. Microbiol. 81, 6232–6240 (2015).
pubmed: 26150460
pmcid: 4542222
doi: 10.1128/AEM.01442-15
Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).
pubmed: 30510004
pmcid: 6304949
doi: 10.1073/pnas.1809349115
Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).
pubmed: 22411464
pmcid: 3418802
doi: 10.1038/nrg3182
Leulier, F. et al. Integrative physiology: at the crossroads of nutrition, microbiota, animal physiology, and human health. Cell Metab. 25, 522–534 (2017).
pubmed: 28273475
pmcid: 6200423
doi: 10.1016/j.cmet.2017.02.001
Gleason, R. J., Anand, A., Kai, T. & Chen, X. Protecting and diversifying the germline. Genetics 208, 435–471 (2018).
pubmed: 29378808
pmcid: 5788515
doi: 10.1534/genetics.117.300208
He, L., Wang, X. & Montell, D. J. Shining light on Drosophila oogenesis: live imaging of egg development. Curr. Opin. Genet. Dev. 21, 612–619 (2011).
pubmed: 21930372
pmcid: 6824908
doi: 10.1016/j.gde.2011.08.011
Lehmann, R. Germline stem cells: origin and destiny. Cell Stem Cell 10, 729–739 (2012).
pubmed: 22704513
pmcid: 3750984
doi: 10.1016/j.stem.2012.05.016
Pritchett, T. L., Tanner, E. A. & McCall, K. Cracking open cell death in the Drosophila ovary. Apoptosis 14, 969–979 (2009).
pubmed: 19533361
pmcid: 2810646
doi: 10.1007/s10495-009-0369-z
Armstrong, A. R. & Drummond-Barbosa, D. Insulin signaling acts in adult adipocytes via GSK-3β and independently of FOXO to control Drosophila female germline stem cell numbers. Dev. Biol. 440, 31–39 (2018).
pubmed: 29729259
pmcid: 5988998
doi: 10.1016/j.ydbio.2018.04.028
Carney, G. E. & Bender, M. The Drosophila ecdysone receptor (EcR) gene is required maternally for normal oogenesis. Genetics 154, 1203–1211 (2000).
pubmed: 10757764
pmcid: 1461007
doi: 10.1093/genetics/154.3.1203
Baumann, A. A. et al. Genetic tools to study juvenile hormone action in Drosophila. Sci. Rep. 7, 1–15 (2017).
doi: 10.1038/s41598-017-02264-4
Andreenkova, O. V., Adonyeva, N. V., Eremina, M. A., Gruntenko, N. E. & Rauschenbach, I. Y. The insulin-like receptor gene expression in the tissues synthesizing gonadotropic hormones at sexual maturation of Drosophila melanogaster females. Russ. J. Genet. 52, 1214–1217 (2016).
doi: 10.1134/S1022795416110028
Garofalo, R. S. & Rosen, O. M. Tissue localization of Drosophila melanogaster insulin receptor transcripts during development. Mol. Cell. Biol. 8, 1638–1647 (1988).
pubmed: 2454394
pmcid: 363323
Hsu, H. J. & Drummond-Barbosa, D. Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc. Natl Acad. Sci. USA 106, 1117–1121 (2009).
pubmed: 19136634
pmcid: 2633547
doi: 10.1073/pnas.0809144106
Drummond-Barbosa, D. & Spradling, A. C. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev. Biol. 231, 265–278 (2001).
pubmed: 11180967
doi: 10.1006/dbio.2000.0135
Mirth, C. K. et al. Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila. Proc. Natl Acad. Sci. USA 111, 7018–7023 (2014).
pubmed: 24778227
pmcid: 4024895
doi: 10.1073/pnas.1313058111
Sieber, M. H. & Spradling, A. C. Steroid signaling establishes a female metabolic state and regulates SREBP to control oocyte lipid accumulation. Curr. Biol. 25, 993–1004 (2015).
pubmed: 25802149
pmcid: 6894397
doi: 10.1016/j.cub.2015.02.019
LaFever, L. & Drummond-Barbosa, D. Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 309, 1071–1073 (2005).
pubmed: 16099985
doi: 10.1126/science.1111410
Ameku, T. & Niwa, R. Mating-induced increase in germline stem cells via the neuroendocrine system in female Drosophila. PLoS Genet. 12, e1006123 (2016).
pubmed: 27310920
pmcid: 4911108
doi: 10.1371/journal.pgen.1006123
Yoshinari, Y. et al. Neuronal octopamine signaling regulates mating-induced germline stem cell increase in female Drosophila melanogaster. Elife 9, 1–35 (2020).
doi: 10.7554/eLife.57101
Belles, X. & Piulachs, M. D. Ecdysone signalling and ovarian development in insects: from stem cells to ovarian follicle formation. Biochim. Biophys. Acta - Gene Regul. Mech. 1849, 181–186 (2015).
doi: 10.1016/j.bbagrm.2014.05.025
Terashima, J., Takaki, K., Sakurai, S. & Bownes, M. Nutritional status affects 20-hydroxyecdysone concentration and progression of oogenesis in Drosophila melanogaster. J. Endocrinol. 187, 69–79 (2005).
pubmed: 16214942
doi: 10.1677/joe.1.06220
Schwedes, C. C. & Carney, G. E. Ecdysone signaling in adult Drosophila melanogaster. J. Insect Physiol. 58, 293–302 (2012).
pubmed: 22310011
doi: 10.1016/j.jinsphys.2012.01.013
Ables, E. T., Bois, K. E., Garcia, C. A. & Drummond-Barbosa, D. Ecdysone response gene E78 controls ovarian germline stem cell niche formation and follicle survival in Drosophila. Dev. Biol. 400, 33–42 (2015).
pubmed: 25624267
pmcid: 4448935
doi: 10.1016/j.ydbio.2015.01.013
Ables, E. T. & Drummond-Barbosa, D. The steroid hormone ecdysone functions with intrinsic chromatin remodeling factors to control female germline stem cells in Drosophila. Cell Stem Cell 7, 581–592 (2010).
pubmed: 21040900
pmcid: 3292427
doi: 10.1016/j.stem.2010.10.001
Buszczak, M. et al. Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development 126, 4581–4589 (1999).
pubmed: 10498692
doi: 10.1242/dev.126.20.4581
Terashima, J. & Bownes, M. E75A and E75B have opposite effects on the apoptosis/development choice of the Drosophila egg chamber. Cell Death Differ. 13, 454–464 (2006).
pubmed: 16211082
doi: 10.1038/sj.cdd.4401745
Riddiford, L. M., Cherbas, P. & Truman, J. W. Ecdysone receptors and their biological actions. Vitam. Horm. 60, 1–73 (2000).
pubmed: 11037621
doi: 10.1016/S0083-6729(00)60016-X
Soller, M., Bownes, M. & Kubli, E. Control of oocyte maturation in sexually mature Drosophila females. Dev. Biol. 208, 337–351 (1999).
pubmed: 10191049
doi: 10.1006/dbio.1999.9210
Gruntenko, N. E. & Rauschenbach, I. Y. Interplay of JH, 20E and biogenic amines under normal and stress conditions and its effect on reproduction. J. Insect Physiol. 54, 902–908 (2008).
pubmed: 18511066
doi: 10.1016/j.jinsphys.2008.04.004
Shin, S. C. et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334, 670–674 (2011).
pubmed: 22053049
doi: 10.1126/science.1212782
Lee, I. P. A., Eldakar, O. T., Gogarten, J. P. & Andam, C. P. Bacterial cooperation through horizontal gene transfer. Trends Ecol. Evol. 37, 223–232 (2022).
pubmed: 34815098
doi: 10.1016/j.tree.2021.11.006
Craddock, E. M. & Boake, C. Onset of vitellogenesis in female Drosophila silvestrls is accelerated in the presence of sexually mature males. Endocrinology 38, 643–650 (1992).
Lieber, T., Kidd, S. & Struhl, G. DSL-notch signaling in the Drosophila brain in response to olfactory stimulation. Neuron 69, 468–481 (2011).
pubmed: 21315258
pmcid: 3216490
doi: 10.1016/j.neuron.2010.12.015
Balakireva, M., Stocker, R. F., Gendre, N. & Ferveur, J. F. Voila, a new Drosophila courtship variant that affects the nervous system: Behavioral, neural, and genetic characterization. J. Neurosci. 18, 4335–4343 (1998).
pubmed: 9592110
pmcid: 6792809
doi: 10.1523/JNEUROSCI.18-11-04335.1998
Koyle, M. L. et al. Rearing the fruit fly drosophila melanogaster under axenic and gnotobiotic conditions. J. Vis. Exp. 113, e54219 (2016).
Obata, F., Fons, C. O. & Gould, A. P. Early-life exposure to low-dose oxidants can increase longevity via microbiome remodelling in Drosophila. Nat. Commun. 9, 975 (2018).
pubmed: 29515102
pmcid: 5841413
doi: 10.1038/s41467-018-03070-w
Jenkins, V. K., Timmons, A. K. & McCall, K. Diversity of cell death pathways: Insight from the fly ovary. Trends Cell Biol. 23, 567–574 (2013).
pubmed: 23968895
doi: 10.1016/j.tcb.2013.07.005
Steller, H. Regulation of apoptosis in Drosophila. Cell Death Differ. 15, 1132–1138 (2008).
pubmed: 18437164
doi: 10.1038/cdd.2008.50
Ryoo, H. D. & Baehrecke, E. H. Distinct death mechanisms in Drosophila development. Curr. Opin. Cell Biol. 22, 889–895 (2010).
pubmed: 20846841
pmcid: 2993842
doi: 10.1016/j.ceb.2010.08.022
Margolis, J. & Spradling, A. Identification and behavior of epithelial stem cells in the Drosophila ovary. Development 121, 3797–3807 (1995).
pubmed: 8582289
doi: 10.1242/dev.121.11.3797
Dubrovsky, E. B. Hormonal cross talk in insect development. Trends Endocrinol. Metab. 16, 6–11 (2005).
pubmed: 15620543
doi: 10.1016/j.tem.2004.11.003
Niwa, Y. S. & Niwa, R. Transcriptional regulation of insect steroid hormone biosynthesis and its role in controlling timing of molting and metamorphosis. Dev. Growth Differ. 58, 94–105 (2016).
pubmed: 26667894
doi: 10.1111/dgd.12248
Santos, C. G., Humann, F. C. & Hartfelder, K. Juvenile hormone signaling in insect oogenesis. Curr. Opin. Insect Sci. 31, 43–48 (2019).
pubmed: 31109672
doi: 10.1016/j.cois.2018.07.010
Das, D. & Arur, S. Conserved insulin signaling in the regulation of oocyte growth, development, and maturation. Mol. Reprod. Dev. 84, 444–459 (2017).
pubmed: 28379636
pmcid: 5477485
doi: 10.1002/mrd.22806
Weaver, L. N., Ma, T. & Drummond-Barbosa, D. Analysis of Gal4 expression patterns in adult Drosophila females. G3 Genes Genomes Genet. 10, 4147–4158 (2020).
doi: 10.1534/g3.120.401676
Luo, W. et al. Dual roles of juvenile hormone signaling during early oogenesis in Drosophila. Insect Sci. 27, 665–674 (2020).
pubmed: 31207060
doi: 10.1111/1744-7917.12698
Ramos, F. O. et al. Juvenile hormone mediates lipid storage in the oocytes of Dipetalogaster maxima. Insect Biochem. Mol. Biol. 133, 103499 (2021).
pubmed: 33212190
doi: 10.1016/j.ibmb.2020.103499
Abdou, M. A. et al. Drosophila Met and Gce are partially redundant in transducing juvenile hormone action. Insect Biochem. Mol. Biol. 41, 938–945 (2011).
pubmed: 21968404
doi: 10.1016/j.ibmb.2011.09.003
Niwa, R. & Niwa, Y. S. Enzymes for ecdysteroid biosynthesis: Their biological functions in insects and beyond. Biosci. Biotechnol. Biochem. 78, 1283–1292 (2014).
pubmed: 25130728
doi: 10.1080/09168451.2014.942250
Wen, D. et al. Methyl farnesoate plays a dual role in regulating Drosophila metamorphosis. PLoS Genet. 11, 1–19 (2015).
doi: 10.1371/journal.pgen.1005038
de A Camargo, R. et al. De novo transcriptome assembly and analysis to identify potential gene targets for RNAi-mediated control of the tomato leafminer (Tuta absoluta). BMC Genom. 16, 635 (2015).
doi: 10.1186/s12864-015-1841-5
Niwa, Y. S. & Niwa, R. Neural control of steroid hormone biosynthesis during development in the fruit fly Drosophila melanogaster. Genes Genet. Syst. 89, 27–34 (2014).
pubmed: 24817759
doi: 10.1266/ggs.89.27
Rewitz, K. F., Yamanaka, N. & O’Connor, M. B. Steroid hormone inactivation is required during the juvenile-adult transition in Drosophila. Dev. Cell 19, 895–902 (2010).
pubmed: 21145504
pmcid: 3025487
doi: 10.1016/j.devcel.2010.10.021
Guittard, E. et al. CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis. Dev. Biol. 349, 35–45 (2011).
pubmed: 20932968
doi: 10.1016/j.ydbio.2010.09.023
Petryk, A. et al. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proc. Natl Acad. Sci. USA 100, 13773–13778 (2003).
pubmed: 14610274
pmcid: 283497
doi: 10.1073/pnas.2336088100
Niwa, R. et al. Juvenile hormone acid O-methyltransferase in Drosophila melanogaster. Insect Biochem. Mol. Biol. 38, 714–720 (2008).
pubmed: 18549957
doi: 10.1016/j.ibmb.2008.04.003
Bendena, W. G., Zhang, J., Burtenshaw, S. M. & Tobe, S. S. Evidence for differential biosynthesis of juvenile hormone (and related) sesquiterpenoids in Drosophila melanogaster. Gen. Comp. Endocrinol. 172, 56–61 (2011).
pubmed: 21354154
doi: 10.1016/j.ygcen.2011.02.014
Hackney, J. F., Pucci, C., Naes, E. & Dobens, L. L. Ras signaling modulates activity of the Ecdysone Receptor EcR during cell migration in the Drosophila ovary. Dev. Dyn. 236, 1213–1226 (2007).
pubmed: 17436275
doi: 10.1002/dvdy.21140
Kozlova, T. & Thummel, C. S. Spatial patterns of ecdysteroid receptor activation during the onset of Drosophila metamorphosis. Development 129, 1739–1750 (2002).
pubmed: 11923209
doi: 10.1242/dev.129.7.1739
Grandison, R. C., Piper, M. D. W. & Partridge, L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462, 1061–1064 (2009).
pubmed: 19956092
pmcid: 2798000
doi: 10.1038/nature08619
Weiss, I. M., Muth, C., Drumm, R. & Kirchner, H. O. K. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophys. 11, 1–15 (2018).
doi: 10.1186/s13628-018-0042-4
Wong, C. N. A., Ng, P. & Douglas, A. E. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 13, 1889–1900 (2011).
pubmed: 21631690
pmcid: 3495270
doi: 10.1111/j.1462-2920.2011.02511.x
Broderick, N. A. & Lemaitre, B. Gut-associated microbes of Drosophila melanogaster. Landes Biosci. 3, 307–321 (2012).
Wong, A. C. N., Chaston, J. M. & Douglas, A. E. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J. 7, 1922–1932 (2013).
pubmed: 23719154
pmcid: 3965314
doi: 10.1038/ismej.2013.86
Martino, M. E. et al. Bacterial adaptation to the host’s diet is a key evolutionary force shaping Drosophila-Lactobacillus symbiosis. Cell Host Microbe 24, 109–119.e6 (2018).
pubmed: 30008290
pmcid: 6054917
doi: 10.1016/j.chom.2018.06.001
Henry, L. P., Bruijning, M., Forsberg, S. K. G. & Ayroles, J. F. The microbiome extends host evolutionary potential. Nat. Commun. 12, 1–13 (2021).
doi: 10.1038/s41467-021-25315-x
Ameku, T. et al. Midgut-derived neuropeptide F controls germline stem cell proliferation in a mating-dependent manner. PLoS Biol. 16, 1–27 (2018).
doi: 10.1371/journal.pbio.2005004
Hou, Y. C. C., Chittaranjan, S., Barbosa, S. G., McCall, K. & Gorski, S. M. Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis. J. Cell Biol. 182, 1127–1139 (2008).
pubmed: 18794330
pmcid: 2542474
doi: 10.1083/jcb.200712091
Nezis, L. P. et al. Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy. Autophagy 5, 298–302 (2009).
pubmed: 19066465
doi: 10.4161/auto.5.3.7454
Armstrong, A. R., Laws, K. M. & Drummond-Barbosa, D. Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of Target of Rapamycin signaling in Drosophila. Development 141, 4479–4488 (2014).
pubmed: 25359724
pmcid: 4302921
doi: 10.1242/dev.116467
Mattila, J. & Hietakangas, V. Regulation of carbohydrate energy metabolism in Drosophila melanogaster. Genetics 207, 1231–1253 (2017).
pubmed: 29203701
pmcid: 5714444
Cakouros, D., Daish, T. J. & Kumar, S. Ecdysone receptor directly binds the promoter of the Drosophila caspase dronc, regulating its expression in specific tissues. J. Cell Biol. 165, 631–640 (2004).
pubmed: 15173191
pmcid: 2172386
doi: 10.1083/jcb.200311057
Jiang, C., Lamblin, J., Steller, H., Thummel, C. S. & Hughes, H. A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol. Cell 5, 445–455 (2000).
pubmed: 10882130
doi: 10.1016/S1097-2765(00)80439-6
Morris, L. X. & Spradling, A. C. Steroid signaling within Drosophila ovarian epithelial cells sex-specifically modulates early germ cell development and meiotic entry. PLoS One 7, 1–11 (2012).
doi: 10.1371/journal.pone.0046109
König, A., Yatsenko, A. S., Weiss, M. & Shcherbata, H. R. Ecdysteroids affect Drosophila ovarian stem cell niche formation and early germline differentiation. EMBO J. 30, 1549–1562 (2011).
pubmed: 21423150
pmcid: 3102283
doi: 10.1038/emboj.2011.73
Reiff, T. et al. Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. Elife 4, 1–19 (2015).
doi: 10.7554/eLife.06930
Henriques, S. F. et al. Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nat. Commun. 11, 1–15 (2020).
doi: 10.1038/s41467-020-18049-9
Lebo, D. P. V. & McCall, K. Murder on the ovarian express: a tale of non-autonomous cell death in the Drosophila ovary. Cells 10, 1454 (2021).
pubmed: 34200604
pmcid: 8228772
doi: 10.3390/cells10061454
Hudry, B. et al. Sex differences in intestinal carbohydrate metabolism promote food intake and sperm maturation. Cell 178, 901–918.e16 (2019).
pubmed: 31398343
pmcid: 6700282
doi: 10.1016/j.cell.2019.07.029
Ahmed, S. M. H. et al. Fitness trade-offs incurred by ovary-to-gut steroid signalling in Drosophila. Nature 584, 415–419 (2020).
pubmed: 32641829
pmcid: 7442704
doi: 10.1038/s41586-020-2462-y
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
pubmed: 26271760
doi: 10.1111/1462-2920.13023
Arisdakessian, C., Cleveland, S. B. & Belcaid, M. MetaFlow|mics: scalable and reproducible nextflow pipelines for the analysis of microbiome marker data. ACM Int. Conf. Proc. Ser. 120–124 (2020).
Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8, 1188 (2017).
pubmed: 29084957
pmcid: 5662604
doi: 10.1038/s41467-017-01312-x
Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
pubmed: 19801464
pmcid: 2786419
doi: 10.1128/AEM.01541-09
Sabat, D. & Johnson, E. M. A protocol to generate germ free drosophila for microbial interaction studies. Adv. Tech. Biol. Med. s1, 001 (2015).
doi: 10.4172/2379-1764.S1-001
Kai, T. & Spradling, A. An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells. Proc. Natl Acad. Sci. USA 100, 4633–4638 (2003).
pubmed: 12676994
pmcid: 153607
doi: 10.1073/pnas.0830856100
Harrison, D. A. & Perrimon, N. Simple and efficient generation of marked clones in Drosophila. Curr. Biol. 3, 424–433 (1993).
pubmed: 15335709
doi: 10.1016/0960-9822(93)90349-S
Cetraro, N. & Yew, J. Y. In situ lipid profiling of insect pheromone glands by direct analysis in real time mass spectrometry. Analyst 147, 3276–3284 (2022).
pubmed: 35713158
pmcid: 9390970
doi: 10.1039/D2AN00840H
Navare, A. T., Mayoral, J. G., Nouzova, M., Noriega, F. G. & Fernández, F. M. Rapid direct analysis in real time (DART) mass spectrometric detection of juvenile hormone III and its terpene precursors. Anal. Bioanal. Chem. 398, 3005–3013 (2010).
pubmed: 20936260
pmcid: 3040246
doi: 10.1007/s00216-010-4269-4