Short repetition time diffusion-weighted imaging improves visualization of prostate cancer.

Apparent diffusion coefficient Diffusion-weighted imaging Magnetic resonance imaging Prostate cancer Repetition time

Journal

Japanese journal of radiology
ISSN: 1867-108X
Titre abrégé: Jpn J Radiol
Pays: Japan
ID NLM: 101490689

Informations de publication

Date de publication:
21 Dec 2023
Historique:
received: 05 04 2023
accepted: 22 11 2023
medline: 21 12 2023
pubmed: 21 12 2023
entrez: 20 12 2023
Statut: aheadofprint

Résumé

This study aimed to assess whether short repetition time (TR) diffusion-weighted imaging (DWI) could improve diffusion contrast in patients with prostate cancer (PCa) compared with long TR (conventional) reference standard DWI. Our Institutional Review Board approved this retrospective study and waived the need for informed consent. Twenty-five patients with suspected PCa underwent multiparametric magnetic resonance imaging (mp-MRI) using a 3.0-T system. DWI was performed with TR of 1850 ms (short) and 6000 ms (long) with b-values of 0, 1000, and 2000s/mm Regarding b1000, CNR and visual score were significantly higher in short TR compared with long TR (P = .003 and P = .002, respectively), without significant difference in SNR (P = .21). Considering b2000, there was no significant difference in visual score between short and long TR (P = .07). However, SNR and CNR in long TR were higher (P = .01 and P = .04, respectively). ADC showed significant correlations, without apparent bias for ADC between short and long TR for both b-values. For diagnostic performance of DWI between short and long TR for both b-values, one out of five readers noted a significant difference, with the short TR for both b-values demonstrating superior performance. Our data showed that the short TR DWI

Identifiants

pubmed: 38123889
doi: 10.1007/s11604-023-01519-7
pii: 10.1007/s11604-023-01519-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s).

Références

Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, et al. ESUR prostate MR guidelines 2012. Eur Radiol. 2012;22:746–57. https://doi.org/10.1007/s00330-011-2377-y .
doi: 10.1007/s00330-011-2377-y pubmed: 22322308 pmcid: 3297750
Bratan F, Niaf E, Melodelima C, Chesnais AL, Souchon R, Mège-Lechevallier F, et al. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol. 2013;23:2019–29. https://doi.org/10.1007/s00330-013-2795-0 .
doi: 10.1007/s00330-013-2795-0 pubmed: 23494494
Kido A, Tamada T, Kanomata N, Yamamoto A, Miyaji Y, Nagai A, et al. Multidimensional analysis of clinicopathological characteristics of false-negative clinically significant prostate cancers on multiparametric MRI of the prostate in Japanese men. Jpn J Radiol. 2019;37:154–64. https://doi.org/10.1007/s11604-018-0801-9 .
doi: 10.1007/s11604-018-0801-9 pubmed: 30600483
Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (Promis): a paired validating confirmatory study. Lancet. 2017;389:815–22. https://doi.org/10.1016/S0140-6736(16)32401-1 .
doi: 10.1016/S0140-6736(16)32401-1 pubmed: 28110982
Delongchamps NB, Lefèvre A, Bouazza N, Beuvon F, Legman P, Cornud F. Detection of significant prostate cancer with magnetic resonance targeted biopsies—transrectal ultrasound-magnetic resonance imaging fusion guided biopsies alone be a standard of care? J Urol. 2015;193:1198–204. https://doi.org/10.1016/j.juro.2014.11.002 .
doi: 10.1016/j.juro.2014.11.002 pubmed: 25451824
Schoots IG, Roobol MJ, Nieboer D, Bangma CH, Steyerberg EW, Hunink MG. Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol. 2015;68:438–50. https://doi.org/10.1016/j.eururo.2014.11.037 .
doi: 10.1016/j.eururo.2014.11.037 pubmed: 25480312
Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, et al. Prostate imaging reporting and data system. version 2.1: 2019 update of prostate imaging reporting and data system. version 2. Eur Urol. 2019;76:340–51. https://doi.org/10.1016/j.eururo.2019.02.033 .
doi: 10.1016/j.eururo.2019.02.033 pubmed: 30898406
Baur ADJ, Hansen CM, Rogasch J, Posch H, Elezkurtaj S, Maxeiner A, et al. Evaluation of T1 relaxation time in prostate cancer and benign prostate tissue using a modified look-locker inversion recovery sequence. Sci Rep. 2020;10:3121. https://doi.org/10.1038/s41598-020-59942-z .
doi: 10.1038/s41598-020-59942-z pubmed: 32080281 pmcid: 7033189
Ueda Y, Tamada T, Yoshida K, Kido A, Obara M, Yoneyama M et al. Short TR DWI in prostate. In: Proceedings of the 28th annual meeting of ISMRM, Sydney. 2020;2423
Panda A, Obmann VC, Lo WC, Margevicius S, Jiang Y, Schluchter M, et al. MR fingerprinting and ADC mapping for characterization of lesions in the transition zone of the prostate gland. Radiology. 2019;292:685–94. https://doi.org/10.1148/radiol.2019181705 .
doi: 10.1148/radiol.2019181705 pubmed: 31335285
Arita Y, Akita H, Fujiwara H, Hashimoto M, Shigeta K, Kwee TC, et al. Synthetic magnetic resonance imaging for primary prostate cancer evaluation: diagnostic potential of a non-contrast-enhanced bi-parametric approach enhanced with relaxometry measurements. Eur J Radiol Open. 2022;9: 100403. https://doi.org/10.1016/j.ejro.2022.100403 .
doi: 10.1016/j.ejro.2022.100403 pubmed: 35242886 pmcid: 8857584
Al-Bourini O, Seif Amir HA, Giganti F, Balz J, Heitz LG, Voit D, et al. T1 mapping of the prostate using single-shot T1FLASH: a clinical feasibility study to optimize prostate cancer assessment. Invest Radiol. 2023;58:380–7. https://doi.org/10.1097/RLI.0000000000000945 .
doi: 10.1097/RLI.0000000000000945 pubmed: 36729865
Yu AC, Badve C, Ponsky LE, Pahwa S, Dastmalchian S, Rogers M, et al. Development of a combined MR fingerprinting and diffusion examination for prostate cancer. Radiology. 2017;283:729–38. https://doi.org/10.1148/radiol.2017161599 .
doi: 10.1148/radiol.2017161599 pubmed: 28187264
Ueda Y, Onoda M, Ohno N, Obara M, Yoneyama M, Akamine Y, et al. 3D hepatocyte fraction index using 3D look locker. In: Proceedings of the 27th annual meeting of ISMRM, Montreal. 2019;1947
Verma S, Choyke PL, Eberhardt SC, Oto A, Tempany CM, Turkbey B, et al. The current state of MR imaging-targeted biopsy techniques for detection of prostate cancer. Radiology. 2017;285:343–56. https://doi.org/10.1148/radiol.2017161684 .
doi: 10.1148/radiol.2017161684 pubmed: 29045233
Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS prostate imaging—reporting and data system: 2015. version 2. Eur Urol. 2016;69:16–40. https://doi.org/10.1016/j.eururo.2015.08.052 .
doi: 10.1016/j.eururo.2015.08.052 pubmed: 26427566
Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA, et al. The 2014 international society of urological pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am J Surg Pathol. 2016;40:244–52. https://doi.org/10.1097/PAS.0000000000000530 .
doi: 10.1097/PAS.0000000000000530 pubmed: 26492179
Ueda T, Ohno Y, Yamamoto K, Murayama K, Ikedo M, Yui M, et al. Deep learning reconstruction of diffusion-weighted MRI improves image quality for prostatic imaging. Radiology. 2022;303:373–81. https://doi.org/10.1148/radiol.204097 .
doi: 10.1148/radiol.204097 pubmed: 35103536
Rosenkrantz AB, Parikh N, Kierans AS, Kong MX, Babb JS, Taneja SS, et al. Prostate cancer detection using computed very high b-value diffusion-weighted imaging: how high should we go? Acad Radiol. 2016;23:704–11. https://doi.org/10.1016/j.acra.2016.02.003 .
doi: 10.1016/j.acra.2016.02.003 pubmed: 26992738
Ueno Y, Takahashi S, Ohno Y, Kitajima K, Yui M, Kassai Y, et al. Computed diffusion-weighted MRI for prostate cancer detection: the influence of the combinations of b-values. Br J Radiol. 2015;88:20140738. https://doi.org/10.1259/bjr.20140738 .
doi: 10.1259/bjr.20140738 pubmed: 25605347 pmcid: 4651258

Auteurs

Atsushi Higaki (A)

Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan. ahah@med.kawasaki-m.ac.jp.

Tsutomu Tamada (T)

Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan.

Ayumu Kido (A)

Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan.

Mitsuru Takeuchi (M)

Department of Radiology, Radiolonet Tokai, Nagoya, 460-8501, Japan.

Kentaro Ono (K)

Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan.

Yoshiyuki Miyaji (Y)

Department of Urology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan.

Koji Yoshida (K)

Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan.

Hiroyasu Sanai (H)

Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan.

Kazunori Moriya (K)

Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan.

Akira Yamamoto (A)

Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan.

Classifications MeSH