A passive method for sampling water in the soil-plant-atmosphere continuum for stable hydrogen and oxygen isotope analyses.


Journal

Rapid communications in mass spectrometry : RCM
ISSN: 1097-0231
Titre abrégé: Rapid Commun Mass Spectrom
Pays: England
ID NLM: 8802365

Informations de publication

Date de publication:
30 Jan 2024
Historique:
revised: 12 09 2023
received: 28 03 2023
accepted: 14 09 2023
medline: 21 12 2023
pubmed: 21 12 2023
entrez: 21 12 2023
Statut: ppublish

Résumé

Hydrogen and oxygen isotopes in water molecules are powerful tools to constrain the dynamics of water cycling within the soil-plant-atmosphere continuum (SPAC). However, the recovery of water from the SPAC requires logistical arrangements and implementation of different time- and cost-consuming techniques in either the field or the laboratory. We developed a passive method to sample water from the three compartments of the SPAC by using a hygroscopic salt of a high water absorbance capacity (CaCl Our experiments show that anhydrous CaCl The CaCl

Identifiants

pubmed: 38124170
doi: 10.1002/rcm.9646
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e9646

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : 268236062 -SFB 1211

Informations de copyright

© 2023 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd.

Références

Beyer M, Kühnhammer K, Dubbert M. In situ measurements of soil and plant water isotopes: A review of approaches, practical considerations and a vision for the future. Hydrol Earth Syst Sci. 2020;24(9):4413-4440. doi:10.5194/hess-24-4413-2020
Werner C, Dubbert M. Resolving rapid dynamics of soil-plant-atmosphere interactions. New Phytol. 2016;210(3):767-769. doi:10.1111/nph.13936
Kendall C, McDonnell JJ. Isotope Tracers in Catchment Hydrology. Elsevier; 1998.
Brinkmann N, Seeger S, Weiler M, Buchmann N, Eugster W, Kahmen A. Employing stable isotopes to determine the residence times of soil water and the temporal origin of water taken up by Fagus sylvatica and Picea abies in a temperate forest. New Phytol. 2018;219(4):1300-1313. doi:10.1111/nph.15255
Lee KS, Kim JM, Lee DR, Kim Y, Lee D. Analysis of water movement through an unsaturated soil zone in Jeju Island, Korea using stable oxygen and hydrogen isotopes. J Hydrol. 2007;345(3-4):199-211. doi:10.1016/j.jhydrol.2007.08.006
Oerter EJ, Bowen G. In situ monitoring of H and O stable isotopes in soil water reveals ecohydrologic dynamics in managed soil systems. Ecohydrology. 2017;10(4):e1841. doi:10.1002/eco.1841
Rothfuss Y, Vereecken H, Brüggemann N. Monitoring water stable isotopic composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy: Monitoring water stable isotopic composition in soils. Water Resour Res. 2013;49(6):3747-3755. doi:10.1002/wrcr.20311
Cernusak LA, Wong S-C, Farquhar GD. Oxygen isotope composition of phloem sap in relation to leaf water in Ricinus communis. Funct Plant Biol. 2003;30(10):1059-1070. doi:10.1071/FP03137
Ehleringer JR, Dawson TE. Water-uptake by plants: Perspectives from stable isotope composition. Plant Cell Environ. 1992;15(9):1073-1082. doi:10.1111/j.1365-3040.1992.tb01657.x
Farquhar GD, Lloyd J, Taylor JA, et al. Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature. 1993;363(6428):439-443. doi:10.1038/363439a0
Penna D, Hopp L, Scandellari F, et al. Ideas and perspectives: Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes - Challenges and opportunities from an interdisciplinary perspective. Biogeosciences. 2018;15(21):6399-6415. doi:10.5194/bg-15-6399-2018
Zimmermann U, Ehhalt D, Münnich KO. Soil-water movement and evapotranspiration: Changes in the isotopic composition of the water. Symp Isot Hydrol I. 1967;567-585.
Barkan E, Luz B. Diffusivity fractionations of H216O/H217O and H216O/H218O in air and their implications for isotope hydrology. Rapid Commun Mass Spectrom. 2007;21(18):2999-3005. doi:10.1002/rcm.3180
Landais A, Barkan E, Luz B. Record of δ18O and 17O-excess in ice from Vostock Antarctica during the last 150 000 years. Geophys Res Lett. 2008;35(2):L02709. doi:10.1029/2007GL032096
Uechi Y, Uemura R. Dominant influence of the humidity in the moisture source region on the 17O-excess in precipitation on a subtropical island. Earth Planet Sci Lett. 2019;513:20-28. doi:10.1016/j.epsl.2019.02.012
Voigt C, Herwartz D, Dorador C, Staubwasser M. Triple oxygen isotope systematic of evaporation and mixing processes in a dynamic desert lake system. Hydrol Earth Syst Sci. 2021;25(3):1211-1228. doi:10.5194/hess-25-1211-2021
Galewsky J, Steen-Larsen HC, Field R, Worden J, Risi C, Schneider M. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Rev Geophys. 2016;54(4):809-865. doi:10.1002/2015RG000512
Landais A, Risi C, Bony S, et al. Combined measurements of 17O-excess and d-excess in African monsoon precipitation: Implications for evaluating convective parameterizations. Earth Planet Sci Lett. 2010;298(1):104-112. doi:10.1016/j.epsl.2010.07.033
Dansgaard W. The O18-abundance in fresh water. Geochim Cosmochim Acta. 1954;6(5-6):241-260. doi:10.1016/0016-7037(54)90003-4
Han L-F, Groening M, Aggarwal P, Helliker BR. Reliable determination of oxygen and hydrogen isotope ratios in atmospheric water vapor adsorbed on 3A molecular sieve. Rapid Commun Mass Spectrom. 2006;20(23):3612-3618. doi:10.1002/rcm.2772
Peters LI, Yakir DA. Rapid method for the sampling of atmospheric water vapour for isotopic analysis. Rapid Commun Mass Spectrom. 2010;24(1):103-108. doi:10.1002/rcm.4359
Uemura R, Matsui Y, Yoshimura K, Motoyama H, Yoshida N. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J Geophys Res. 2008;113(D19114). doi:10.1029/2008JD010209
Wang XF, Yakir DA. Using stable isotope of water in evapotranspiration studies. Hydrol Process. 2000;14(8):1407-1421. doi10.1002/1099-1085(20000615)14:8<1407::AID-HYP992>3.0.CO;2-K
Voigt C, Vallet-Coulomb C, Piel C, Alexandre A. 17O-excess and d-excess of atmospheric water vapor measured by cavity ring-down spectrometry: Evidence of a matrix effect and implication for the calibration procedure. Rapid Commun Mass Spectrom. 2022;36(6):e9227. doi:10.1002/rcm.9227
Orlowski N, Pratt DL, McDonnell JJ. Intercomparison of soil pore water extraction methods for stable isotope analysis. Hydrol Process. 2016;33(22):2939-2954. doi:10.1002/hyp.10870
Strong M, Sharp ZD, Gutzler DS. Diagnosing moisture transport using D/H ratios of water vapor. Geophys Res Lett. 2007;34(3):L03404. doi:10.1029/2006GL028307
Johnson LR, Sharp ZD, Galewsky J, et al. Isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: Application to measurements from Mauna Loa observatory, Hawaii. Rapid Commun Mass Spectrom. 2011;25(5):608-616. doi:10.1002/rcm.4894
Noone D, Galewsky J, Sharp ZD, et al. Properties of air mass mixing and humidity in the subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa observatory. J Geophys Res Atmos. 2011;116(D22). doi:10.1029/2011JD015773
Bonne JL, Behrens M, Meyer H, et al. Resolving the controls of water vapour isotopes in the Atlantic sector. Nat Commun. 2019;10(1):1-10. doi:10.1038/s41467-019-09242-6
Araguás-Araguás L, Rozanski K, Gonfiantini R, Louvat D. Isotope effects accompanying vacuum extraction of soil water for stable isotope analyses. J Hydrol. 1995;168(1-4):159-171. doi:10.1016/0022-1694(94)02636-P
Orlowski N, Breuer L, Angeli N, et al. Inter-laboratory comparison of cryogenic water extraction systems for stable isotope analysis of soil water. Hydrol Earth Syst Sci. 2018;22(7):3619-3637. doi:10.5194/hess-22-3619-2018
Gaj M, Beyer M, Koeniger P, Wanke H, Hamutoko J, Himmelsbach T. In situ unsaturated zone water stable isotope (2H and 18O) measurements in semi-arid environments: A soil water balance. Hydrol Earth Syst Sci. 2016;20(2):715-731. doi:10.5194/hess-20-715-2016
Landais A, Barkan E, Yakir D, Luz B. The triple isotopic composition of oxygen in leaf water. Geochim. Cosmochim. Acta. 2006;70(16):4105-4115. doi:10.1016/j.gca.2006.06.1545
West AG, Goldsmith GR, Brooks PD, Dawson TE. Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters. Rapid Commun Mass Spectrom. 2010;24(14):1948-1954. doi:10.1002/rcm.4597
Zhang H, Yuan Y, Sun Q, Cao X, Sun L. Steady-state equation of water vapor sorption for CaCl2-based chemical sorbents and its application. Sci Rep. 2016;6(1):34115. doi:10.1038/srep34115
Lassin A, André L. A revised description of the binary CaCl2-H2O chemical system up to solution-mineral equilibria and temperatures of 250°C using Pitzer equations. Extension to the multicomponent HCl-LiCl-NaCl-KCl-MgCl2-CaCl2-H2O system. J Chem Thermodyn. 2023;176:106927. doi:10.1016/j.jct.2022.106927
Hoefs J. Stable Isotope Geochemistry. 9th ed. Springer; 2021. doi:10.1007/978-3-030-77692-3
Merlivat L, Nief G. Fractionnement isotopique lors des changements d ‘état solide-vapeur et liquide-vapeur de l'eau à des températures inférieures à 0°C. Tellus. 1967;19(1):122-127.
Horita J, Wesolowski DJ. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim Cosmochim Acta. 1994;58(16):3425-3437. doi:10.1016/0016-7037(94)90096-5
Majoube M. Fractionnement en oxygene-18 et en deuterium entre l'eau et sa vapeur. J Chim Phys. 1971;68(10):1423-1436. doi:10.1051/jcp/1971681423
Barkan E, Luz B. High precision measurements of 17O/16O and 18O/16O ratios in H2O. Rapid Commun Mass Spectrom. 2005;19(24):3737-3742. doi:10.1002/rcm.2250
Horita J, Cole DR, Wesolowski DJ. The activity composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: II. Vapor-liquid water equilibration of mixed salt solutions from 50 to 100°C and geochemical implications. Geochim Cosmochim Acta. 1993;57(19):4703-4711. doi:10.1016/0016-7037(93)90194-2
Feder HM, Taube H. Ionic hydration: An isotopic fractionation technique. J Chem Phys. 1952;20(8):1335-1336. doi:10.1063/1.1700749
Koehler G, Wassenaar LI, Hendry J. Measurement of stable isotope activities in saline aqueous solutions using optical spectroscopy methods. Isotopes Environ Health Stud. 2013;49(3):378-386. doi:10.1080/10256016.2013.815183
O'Neil JR, Truesdell AH. Oxygen isotope fractionation studies of solute-water interactions. In: Taylor HP, O'Neil JR, Kaplan IR, eds. Stable Isotope Geochemistry: A Tribute to Samuel Epstein. Geochemical Society, Special Publication. Vol.3; 1991:17-25.
Sofer Z, Gat JR. Activities and concentrations of oxygen-18 in concentrated aqueous salt solutions: Analytical and geophysical implications. Earth Planet Sci Lett. 1972;15(3):232-238. doi:10.1016/0012-821X(72)90168-9
Stewart MK, Friedman I. Deuterium fractionation between aqueous salt solutions and water vapor. J Geophys Res. 1975;80(27):3812-3818. doi:10.1029/JC080i027p03812
Truesdell AH. Oxygen isotope activities and concentrations in aqueous salt solutions at elevated temperatures: Consequences for isotope geochemistry. Earth Planet Sci Lett. 1974;23(3):387-396. doi:10.1016/0012-821X(74)90128-9
Oerter E, Singleton M, Davisson L. Hydrogen and oxygen stable isotope dynamics of hyper-saline and salt-saturated aqueous solutions. Geochim Cosmochim Acta. 2018;238:316-328. doi:10.1016/j.gca.2018.07.009
Sofer Z, Gat JR. The isotope composition of evaporating brines: effect of the isotopic activity ratio in saline soultions. Earth Planet Sci Lett. 1975;26(2):179-186.
McPherson TA. Granular calcium chloride as a drying agent. J Am Chem Soc. 1917;39(7):1317-1319. doi:10.1021/ja02252a004
Cornelissen J, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot. 2003;51(4):335-380. doi:10.1071/BT02124
Herwartz D, Surma J, Voigt C, Assonov S, Staubwasser M. Triple oxygen isotope systematics of structurally bonded water in gypsum. Geochim Cosmochim Acta. 2017;209:254-266. doi:10.1016/j.gca.2017.04.026
Karunadasa KSP, Manoratne CH, Pitawala HMTGA, Rajapakse RMG. Relative stability of hydrated/anhydrous products of calcium chloride during complete dehydration as examined by high-temperature X-ray powder diffraction. J Phys Chem Solids. 2018;120:167-172. doi:10.1016/j.jpcs.2018.04.034
Horita J. Hydrogen isotope analysis of natural waters using an H2-water equilibration method: A special implication to brines. Chem Geol, Isot Geosci Sect. 1988;72(1):89-94. doi:10.1016/0168-9622(88)90040-1
Kim S-T, Knyf M. Oxygen isotope analysis of saline solutions by a carbonic anhydrase-catalyzed CO2-H2O equilibration method (C3HEM) with an improved drying technique. ACS Earth Space Chem. 2020;9(4):1565-1571. doi:10.1021/acsearthspacechem.0c00143
Surma J, Assonov S, Bolourchi MJ, Staubwasser M. Triple oxygen isotope signatures in evaporated water bodies from the Sistan oasis, Iran. Geophys Res Lett. 2015;42(20):8456-8462. doi:10.1002/2015GL066475
Schoenemann SW, Schauer AJ, Steig EJ. Measurement of SLAP2 and GISP δ17O and proposed VSMOW-SLAP normalization for δ17O and 17Oexcess. Rapid Commun Mass Spectrom. 2013;27(5):582-590. doi:10.1002/rcm.6486
Criss RE. The Principles of Stable Isotope Distribution. Oxford University Press; 1999. doi:10.1093/oso/9780195117752.001.0001
El-Shenawy MI, Kim S-T. Disordering of 13C-18O bond in CO2 gas over a heated quartz surface at 50-1100°C: Insights into the abundance of mass 47 (∆47) in CO2 gas at thermodynamic equilibrium. Chem Geol. 2019;524(x):213-227. doi:10.1016/j.chemgeo.2019.06.007
Lin Y, Horita J. An experimental study on isotope fractionation in a mesoporous silica-water system with implications for vadose-zone hydrology. Geochim Cosmochim Acta. 2016;84:257-271. doi:10.1016/j.gca.2016.04.029
Kallenberger PA, Fröba M. Water harvesting from air with a hygroscopic salt in a hydrogel-derived matrix. Commun Chem. 2018;1:28. doi:10.1038/s42004-018-0028-9
Wassenaar LI, Hendry MJ, Chostner VL, Lis GP. High resolution pore water δ2H and δ18O measurements by H2O(liquid)-H2O(vapor) equilibration laser spectroscopy. Environ Sci Technol. 2008;42(24):9262-9267. doi:10.1021/es802065s
Horita J. Analytical aspects of stable isotopes in brines. Chem Geol, Isot Geosci Sect. 1989;79(2):107-112. doi:10.1016/0168-9622(89)90013-4
Barkan E, Fishman E, Affek HP. The effect of salinity on water 17O/16O ratios in brines. Earth Planet Sci Lett. 2022;595:117761. doi:10.1016/j.epsl.2022.117761
Surma J, Assonov S, Herwartz D, Voigt C, Staubwasser M. The evolution of 17O-excess in surface water of the arid environment during recharge and evaporation. Sci Rep. 2018;8(1):4972. doi:10.1038/s41598-018-23151-6
Pack A. Isotopic traces of atmospheric O2 in rocks, minerals, and melts. Rev Mineral Geochem. 2021;86(1):217-240. doi:10.2138/rmg.2021.86.07
Gorski G, Strong C, Good SP, Bares R, Ehleringer JR, Bowen GJ. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere. Proc Natl Acad Sci USA. 2015;112(11):3247-3252. doi:10.1073/pnas.1424728112
Metcalfe DJ. Hedra helix L. J Ecol. 2005;93(3):632-648.
Cernusak LA, Barbour MM, Arndt SK, et al. Stable isotopes in leaf water of terrestrial plants. Plant Cell Environ. 2016;39(x):1087-1102. doi:10.1111/pce.12703
Gonfiantini R, Gratziu S, Tongiorgi E. Oxygen isotope composition of water in leaves. In: Isotopes and Radiation in Soil-Plant Nutrition Studies. IAEA; 1965:405-410.
Alexandre A, Webb E, Landais A, et al. Effects of leaf length and development stage on the triple oxygen isotope signature of grass leaf water and phytoliths: Insights for a proxy of continental atmospheric humidity. Biogeosciences. 2019;16(23):4613-4625. doi:10.5194/bg-16-4613-2019
Balugani E, Lubczynski MW, Metselaar K. Evaporation through a dry soil layer: Column experiments. Water Resour Res. 2021;57(8):e2020WR028286. doi:10.1029/2020WR028286
Rothfuss Y, Merz S, Vanderborght J, et al. Long-term and high-frequency non-destructive monitoring of water stable isotope profiles in an evaporating soil column. Hydrol Earth Syst Sci. 2015;19(10):4067-4080. doi:10.5194/hess-25-1211-2021

Auteurs

Mohammed I El-Shenawy (MI)

Institute for Geology and Mineralogy, University of Cologne, Cologne, Germany.
Department of Geology, Beni-Suef University, Beni-Suef, Egypt.

Daniel Herwartz (D)

Institute for Geology and Mineralogy, University of Cologne, Cologne, Germany.

Michael Staubwasser (M)

Institute for Geology and Mineralogy, University of Cologne, Cologne, Germany.

Classifications MeSH