Effects of CuSO

copper liver mitochondria mitochondrial biogenesis mitochondrial dynamics

Journal

Environmental toxicology
ISSN: 1522-7278
Titre abrégé: Environ Toxicol
Pays: United States
ID NLM: 100885357

Informations de publication

Date de publication:
20 Dec 2023
Historique:
revised: 10 11 2023
received: 20 09 2023
accepted: 01 12 2023
medline: 21 12 2023
pubmed: 21 12 2023
entrez: 21 12 2023
Statut: aheadofprint

Résumé

Copper is an essential trace element for animal. Excessive intake of copper will cause a large accumulation of copper in the body, especially in the liver, and induce hepatotoxicity, however, there are few studies on the effects of copper on hepatic mitochondrial biogenesis and mitochondrial dynamics. In this study, mice were treated with different doses of CuSO

Identifiants

pubmed: 38124272
doi: 10.1002/tox.24085
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National key research and development project
ID : 2022YFD1601602
Organisme : China Agriculture Research System of MOF and MARA
ID : CARS-37
Organisme : Innovative Team for Beef Cattle Low-Carbon Production
ID : 2022-2024

Informations de copyright

© 2023 Wiley Periodicals LLC.

Références

Wang J, Chen J, Tang Z, Li Y, Hu L, Pan J. The effects of copper on brain microvascular endothelial cells and claudin via apoptosis and oxidative stress. Biol Trace Elem Res. 2016;174(1):132-141.
Wang W, Liu C, Ying Z, et al. Particulate air pollution and ischemic stroke hospitalization: how the associations vary by constituents in Shanghai, China. Sci Total Environ. 2019;695:133780.
Su F, Wang T, Zhang H, Song Z, Feng X, Zhang K. The distribution and enrichment characteristics of copper in soil and Phragmites australis of Liao River estuary wetland. Environ Monit Assess. 2018;190(6):365.
Yang F, Liao J, Pei R, et al. Autophagy attenuates copper-induced mitochondrial dysfunction by regulating oxidative stress in chicken hepatocytes. Chemosphere. 2018;204:36-43.
Ozcelik D, Ozaras R, Gurel Z, Uzun H, Aydin S. Copper-mediated oxidative stress in rat liver. Biol Trace Elem Res. 2003;96(1-3):209-215.
Festa RA, Thiele DJ. Copper: an essential metal in biology. Curr Biol. 2011;21(21):R877-R883.
Linder MC, Hazegh-Azam M. Copper biochemistry and molecular biology. Am J Clin Nutr. 1996;63(5):797S-811S.
Padrilah SN, Ahmad SA, Yasid NA, et al. Toxic effects of copper on liver and cholinesterase of Clarias gariepinus. Environ Sci Pollut Res Int. 2017;24(28):22510-22523.
Czlonkowska A, Litwin T, Dusek P, et al. Wilson disease. Nat Rev Dis Primers. 2018;4(1):21.
Hosseini MJ, Shaki F, Ghazi-Khansari M, Pourahmad J. Toxicity of copper on isolated liver mitochondria: impairment at complexes I, II, and IV leads to increased ROS production. Cell Biochem Biophys. 2014;70(1):367-381.
Hussain SP, Raja K, Amstad PA, et al. Increased p53 mutation load in nontumorous human liver of Wilson disease and hemochromatosis: oxyradical overload diseases. Proc Natl Acad Sci U S A. 2000;97(23):12770-12775.
van der Bliek AM, Sedensky MM, Morgan PG. Cell biology of the mitochondrion. Genetics. 2017;207(3):843-871.
Yue R, Xia X, Jiang J, et al. Mitochondrial DNA oxidative damage contributes to cardiomyocyte ischemia/reperfusion-injury in rats: cardioprotective role of lycopene. J Cell Physiol. 2015;230(9):2128-2141.
Anne SR, Leak RK, Gao Y, Chen J. The dynamics of the mitochondrial organelle as a potential therapeutic target. J Cereb Blood Flow Metab. 2013;33(1):22-32.
Picca A, Mankowski RT, Burman JL, et al. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol. 2018;15(9):543-554.
Yang F, Pei R, Zhang Z, et al. Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol In Vitro. 2019;54:310-316.
Yang F, Liao J, Yu W, et al. Exposure to copper induces mitochondria-mediated apoptosis by inhibiting mitophagy and the PINK1/parkin pathway in chicken (Gallus gallus) livers. J Hazard Mater. 2021;408:124888.
Liu H, Guo H, Jian Z, et al. Copper induces oxidative stress and apoptosis in the mouse liver. Oxid Med Cell Longev. 2020;2020:1359164.
Andrade VM, Aschner M, Marreilha DSA. Neurotoxicity of metal mixtures. Adv Neurobiol. 2017;18:227-265.
Wang HW, Zhou BH, Zhang S, et al. Reproductive toxicity in male mice after exposure to high molybdenum and low copper concentrations. Toxicol Ind Health. 2016;32(9):1598-1606.
Tseng HL, Li CJ, Huang LH, et al. Quercetin 3-O-methyl ether protects FL83B cells from copper induced oxidative stress through the PI3K/Akt and MAPK/Erk pathway. Toxicol Appl Pharmacol. 2012;264(1):104-113.
Haywood S, Simpson DM, Ross G, Beynon RJ. The greater susceptibility of North Ronaldsay sheep compared with Cambridge sheep to copper-induced oxidative stress, mitochondrial damage and hepatic stellate cell activation. J Comp Pathol. 2005;133(2-3):114-127.
Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298-300.
Shirihai OS, Song M, Dorn GN. How mitochondrial dynamism orchestrates mitophagy. Circ Res. 2015;116(11):1835-1849.
Warren BE, Lou PH, Lucchinetti E, et al. Early mitochondrial dysfunction in glycolytic muscle, but not oxidative muscle, of the fructose-fed insulin-resistant rat. Am J Physiol Endocrinol Metab. 2014;306(6):E658-E667.
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20(39):14205-14218.
Finsterer J, Zarrouk-Mahjoub S. Mitochondrial neuropathy affects peripheral and cranial nerves and is primary or secondary or both. Neuromuscul Disord. 2016;26(8):548-549.
Akhmedov AT, Rybin V, Marin-Garcia J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev. 2015;20(2):227-249.
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829-839.
Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor a gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A. 1994;91(4):1309-1313.
Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol. 2005;25(4):1354-1366.
Medeiros DM, Jennings D. Role of copper in mitochondrial biogenesis via interaction with ATP synthase and cytochrome c oxidase. J Bioenerg Biomembr. 2002;34(5):389-395.
Guo H, Wei L, Wang Y, et al. Nickel induces hepatotoxicity by mitochondrial biogenesis, mitochondrial dynamics, and mitophagy dysfunction. Environ Toxicol. 2023;38(5):1185-1195.
Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol. 2020;15:235-259.
Liu X, Weaver D, Shirihai O, Hajnoczky G. Mitochondrial ‘kiss-and-run’: interplay between mitochondrial motility and fusion-fission dynamics. EMBO J. 2009;28(20):3074-3089.
Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC. Structural basis of mitochondrial tethering by mitofusin complexes. Science. 2004;305(5685):858-862.
Pagliuso A, Cossart P, Stavru F. The ever-growing complexity of the mitochondrial fission machinery. Cell Mol Life Sci. 2018;75(3):355-374.
Bui HT, Shaw JM. Dynamin assembly strategies and adaptor proteins in mitochondrial fission. Curr Biol. 2013;23(19):R891-R899.
Li S, Zhao H, Wang Y, et al. The inflammatory responses in Cu-mediated elemental imbalance is associated with mitochondrial fission and intrinsic apoptosis in Gallus gallus heart. Chemosphere. 2017;189:489-497.
Li X, Bai Y, Huo H, et al. Long-term copper exposure induces mitochondrial dynamics disorder and mitophagy in the cerebrum of pigs. Biol Trace Elem Res. 2023;201(3):1197-1204.

Auteurs

Yihan Wang (Y)

College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.

Yanqiu Zhu (Y)

College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.

Hengmin Cui (H)

College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China.

Huidan Deng (H)

College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China.

Zhicai Zuo (Z)

College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China.

Jing Fang (J)

College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China.

Hongrui Guo (H)

College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China.

Classifications MeSH