Encapsulation of Uranium Oxide in Multiwall WS

WS2 nanotubes entrapment nanocapillary effect uranium oxide uranyl nitrate hydrate

Journal

Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338

Informations de publication

Date de publication:
21 Dec 2023
Historique:
revised: 08 12 2023
received: 03 09 2023
medline: 21 12 2023
pubmed: 21 12 2023
entrez: 21 12 2023
Statut: aheadofprint

Résumé

Uranium is a high-value energy element, yet also poses an appreciable environmental burden. The demand for a straightforward, low energy, and environmentally friendly method for encapsulating uranium species can be beneficial for long-term storage of spent uranium fuel and a host of other applications. Leveraging on the low melting point (60 °C) of uranyl nitrate hexahydrate and nanocapillary effect, a uranium compound is entrapped in the hollow core of WS

Identifiants

pubmed: 38126906
doi: 10.1002/smll.202307684
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2307684

Informations de copyright

© 2023 The Authors. Small published by Wiley-VCH GmbH.

Références

D. Deng, L. Zhang, M. Dong, R. E. Samuel, A. Ofori-Boadu, M. Lamssali, Water Environ. Res. 2020, 92, 1818.
J. Bruno, L. Duro, F. Diaz-Maurin, in Advances in Nuclear Fuel Chemistry, Elsevier, Amsterdam/New York 2020, pp. 527-553.
A. Upadhyaya, Mater. Chem. Phys. 2001, 67, 101.
P. A. Lessing, Development of `DUCRETE, Lockheed Idaho Technologies Company, California, USA 1995, https://doi.org/10.2172/366558.
Z. R. Ismagilov, S. V. Lazareva, N. V. Shikina, V. V. Kuznetsov, M. A. Kerzhentsev, Y. V. Ostrovsky, N. A. Rudina, V. A. Rogov, V. A. Ushakov, Mendeleev Commun. 2011, 21, 209.
Z. R. Ismagilov, S. V. Kuntsevich, V. V. Kuznetsov, N. V. Shikina, M. A. Kerzhentsev, V. A. Rogov, V. A. Ushakov, Kinet. Catal. 2007, 48, 511.
G. J. Hutchings, C. S. Heneghan, I. D. Hudson, S. H. Taylor, Nature 1996, 384, 341.
A. P. Amrute, F. Krumeich, C. Mondelli, J. Pérez-Ramírez, Chem. Sci. 2013, 4, 2209.
L. Ling, W.-X. Zhang, J. Am. Chem. Soc. 2015, 137, 2788.
P. Li, J. Wang, Y. Wang, J. Liang, B. He, D. Pan, Q. Fan, X. Wang, Chem. Eng. J. 2019, 365, 231.
D. Ji, Y. Liu, H. Ma, Z. Bai, Z. Qiao, D. Ji, C. Yan, Y. Yan, H. Wu, ACS Sustainable Chem. Eng. 2022, 10, 11990.
I. I. Fasfous, J. N. Dawoud, Appl. Surf. Sci. 2012, 259, 433.
L. S. Keith, O. M. Faroon, B. A. Fowler, in Handbook on the Toxicology of Metals, Elsevier, Amsterdam/New York 2007, pp. 881-903.
C. Ganguly, in Encyclopedia of Materials: Science and Technology, Elsevier, Amsterdam/New York 2001, pp. 1-15.
T. Chen, K. Yu, C. Dong, X. Yuan, X. Gong, J. Lian, X. Cao, M. Li, L. Zhou, B. Hu, R. He, W. Zhu, X. Wang, Coord. Chem. Rev. 2022, 467, 214615.
M. I. Ojovan, W. E. Lee, S. N. Kalmykov, An Introduction to Nuclear Waste Immobilisation, Elsevier, Amsterdam/New York 2019.
S. A. Kearney, B. Mcluckie, K. Webb, R. Orr, I. A. Vatter, A. S. Yorkshire, C. L. Corkhill, M. Hayes, M. J. Angus, J. L. Provis, J. Nucl. Mater. 2020, 530, 151960.
D. C. Phillips, J. W. Hitchon, D. I. Johnson, J. R. Matthews, J. Nucl. Mater. 1984, 125, 202.
K.-W. Kim, R. I. Foster, J. Kim, H.-H. Sung, D. Yang, W.-J. Shon, M.-K. Oh, K.-Y. Lee, J. Nucl. Mater. 2019, 516, 238.
S. V. Yudintsev, M. S. Nickolsky, M. I. Ojovan, O. I. Stefanovsky, V. I. Malkovsky, A. S. Ulanova, L. R. Blackburn, Ceramics 2023, 6, 1573.
P. Szajerski, Chem. Eng. J. 2021, 404, 126495.
N. P. Laverov, S. V. Yudintsev, B. I. Omel'yanenko, Geol. Ore Deposits 2009, 51, 259.
Y. Zhang, L. Kong, M. Ionescu, D. J. Gregg, J. Eur. Ceram. Soc. 2022, 42, 1852.
C. Haertling, R. J. Hanrahan, J. Nucl. Mater. 2007, 366, 317.
M. Sessim, M. R. Tonks, Nuclear Technology 2021, 207, 1004.
Y. M. Kulyako, T. I. Trofimov, M. D. Samsonov, A. Y.. Shadrin, B. F. Myasoedov, Radiochemistry 2008, 50, 250.
R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature 1992, 360, 444.
M. Bar Sadan, M. Heidelmann, L. Houben, R. Tenne, Appl. Phys. A 2009, 96, 343.
A. Zak, L. Sallacan-Ecker, A. Margolin, M. Genut, R. Tenne, Nano 2009, 04, 91.
L. Rapoport, N. Fleischer, R. Tenne, Adv. Mater. 2003, 15, 651.
C. S. Reddy, A. Zak, E. Zussman, J. Mater. Chem. 2011, 21, 16086.
L. Yadgarov, B. Visic, T. Abir, R. Tenne, A. Y. Polyakov, R. Levi, T. V. Dolgova, V. V. Zubyuk, A. A. Fedyanin, E. A. Goodilin, T. Ellenbogen, R. Tenne, D. Oron, Phys. Chem. Chem. Phys. 2018, 20, 20812.
D. Ugarte, A. Châtelain, W. A. De Heer, Science 1996, 274, 1897.
O. Goldbart, S. R. Cohen, I. Kaplan-Ashiri, P. Glazyrina, H. D. Wagner, A. Enyashin, R. Tenne, Proc. Natl. Acad. Sci.. 2016, 113, 13624.
S. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green, Nature 1994, 372, 159.
R. Kreizman, S. Y. Hong, J. Sloan, R. Popovitz-Biro, A. Albu-Yaron, G. Tobias, B. Ballesteros, B. G. Davis, M. L. H. Green, R. Tenne, Angew. Chem., Int. Ed. 2009, 48, 1230.
S. Sandoval, E. Pach, B. Ballesteros, G. Tobias, Carbon 2017, 123, 129.
N. Thamavaranukup, H. A. Höppe, L. Ruiz-Gonzalez, P. M. F. J. Costa, J. Sloan, A. Kirkland, M. L. H. Green, Chem. Commun. 2004, 1686.
S. Bandi, A. K. Srivastav, J. Mater. Sci. 2021, 56, 6615.
E. R. Nazin, G. M. Zachinyaev, E. V. Belova, I. V. Skvortsov, B. F. Myasoedov, Radiochemistry 2019, 61, 665.
S. Hartland, R. J. Nesbitt, J. Appl. Chem. 2007, 14, 406.
C. R. Edwards, A. J. Oliver, JOM 2000, 52, 12.
R. D. Kozlova, V. A. Matyukha, N. V. Dedov, Radiochemistry 2007, 49, 130.
T. N. Filippov, D. A. Svintsitskiy, I. A. Chetyrin, I. P. Prosvirin, D. S. Selishchev, D. V. Kozlov, Appl. Catal., A 2018, 558, 81.
A. U. Olayiwola, H. Du, S.-N. Wang, B. Liu, Y. Q. Lv, B. Pan, Tungsten 2023, 5, 145.
V. Kundrat, A. Patak, J. Pinkas, J. Nucl. Mater. 2019, 528, 151877.
V. Kundrat, V. Vykoukal, Z. Moravec, L. Simonikova, K. Novotny, J. Pinkas, J. Alloys Compd. 2022, 900, 163542.
E. Lassner, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer, Berlin 2013.
S. Kobayashi, N. Hosoda, R. Takashima, Nucl. Instrum. Methods Phys. Res., Sect. A 1997, 390, 426.
R. C. O'brien, N. D. Jerred, J. Nucl. Mater. 2013, 433, 50.
M. Colella, G. R. Lumpkin, Z. Zhang, E. C. Buck, K. L. Smith, Phys Chem Minerals 2005, 32, 52.
F. Rouquerol, J. Rouquerol, K. S. W. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology, and Applications, Academic Press, San Diego 1999.
Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, (Eds:S. Lowell, J. E. Shields, M. A. Thomas, M. Thommes), Kluwer Academic Publishers, Dordrecht 2010.
J. Chen, S.-L. Li, F. Gao, Z.-L. Tao, Chem. Mater. 2003, 15, 1012.
P. Chithaiah, S. Ghosh, A. Idelevich, L. Rovinsky, T. Livneh, A. Zak, ACS Nano 2020, 14, 3004.

Auteurs

Vojtech Kundrat (V)

Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel.
Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno, CZ-61137, Czech Republic.

Hagai Cohen (H)

Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel.

Anna Kossoy (A)

Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel.

Walter Bonani (W)

European Commission, Joint Research Centre (JRC) - Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

Lothar Houben (L)

Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel.

Jakub Zalesak (J)

Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2A, Salzburg, 5020, Austria.

Bing Wu (B)

Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 16628, Czech Republic.

Zdenek Sofer (Z)

Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 16628, Czech Republic.

Karin Popa (K)

European Commission, Joint Research Centre (JRC) - Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

Reshef Tenne (R)

Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel.

Classifications MeSH