Encapsulation of Uranium Oxide in Multiwall WS
WS2 nanotubes
entrapment
nanocapillary effect
uranium oxide
uranyl nitrate hydrate
Journal
Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338
Informations de publication
Date de publication:
21 Dec 2023
21 Dec 2023
Historique:
revised:
08
12
2023
received:
03
09
2023
medline:
21
12
2023
pubmed:
21
12
2023
entrez:
21
12
2023
Statut:
aheadofprint
Résumé
Uranium is a high-value energy element, yet also poses an appreciable environmental burden. The demand for a straightforward, low energy, and environmentally friendly method for encapsulating uranium species can be beneficial for long-term storage of spent uranium fuel and a host of other applications. Leveraging on the low melting point (60 °C) of uranyl nitrate hexahydrate and nanocapillary effect, a uranium compound is entrapped in the hollow core of WS
Identifiants
pubmed: 38126906
doi: 10.1002/smll.202307684
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2307684Informations de copyright
© 2023 The Authors. Small published by Wiley-VCH GmbH.
Références
D. Deng, L. Zhang, M. Dong, R. E. Samuel, A. Ofori-Boadu, M. Lamssali, Water Environ. Res. 2020, 92, 1818.
J. Bruno, L. Duro, F. Diaz-Maurin, in Advances in Nuclear Fuel Chemistry, Elsevier, Amsterdam/New York 2020, pp. 527-553.
A. Upadhyaya, Mater. Chem. Phys. 2001, 67, 101.
P. A. Lessing, Development of `DUCRETE, Lockheed Idaho Technologies Company, California, USA 1995, https://doi.org/10.2172/366558.
Z. R. Ismagilov, S. V. Lazareva, N. V. Shikina, V. V. Kuznetsov, M. A. Kerzhentsev, Y. V. Ostrovsky, N. A. Rudina, V. A. Rogov, V. A. Ushakov, Mendeleev Commun. 2011, 21, 209.
Z. R. Ismagilov, S. V. Kuntsevich, V. V. Kuznetsov, N. V. Shikina, M. A. Kerzhentsev, V. A. Rogov, V. A. Ushakov, Kinet. Catal. 2007, 48, 511.
G. J. Hutchings, C. S. Heneghan, I. D. Hudson, S. H. Taylor, Nature 1996, 384, 341.
A. P. Amrute, F. Krumeich, C. Mondelli, J. Pérez-Ramírez, Chem. Sci. 2013, 4, 2209.
L. Ling, W.-X. Zhang, J. Am. Chem. Soc. 2015, 137, 2788.
P. Li, J. Wang, Y. Wang, J. Liang, B. He, D. Pan, Q. Fan, X. Wang, Chem. Eng. J. 2019, 365, 231.
D. Ji, Y. Liu, H. Ma, Z. Bai, Z. Qiao, D. Ji, C. Yan, Y. Yan, H. Wu, ACS Sustainable Chem. Eng. 2022, 10, 11990.
I. I. Fasfous, J. N. Dawoud, Appl. Surf. Sci. 2012, 259, 433.
L. S. Keith, O. M. Faroon, B. A. Fowler, in Handbook on the Toxicology of Metals, Elsevier, Amsterdam/New York 2007, pp. 881-903.
C. Ganguly, in Encyclopedia of Materials: Science and Technology, Elsevier, Amsterdam/New York 2001, pp. 1-15.
T. Chen, K. Yu, C. Dong, X. Yuan, X. Gong, J. Lian, X. Cao, M. Li, L. Zhou, B. Hu, R. He, W. Zhu, X. Wang, Coord. Chem. Rev. 2022, 467, 214615.
M. I. Ojovan, W. E. Lee, S. N. Kalmykov, An Introduction to Nuclear Waste Immobilisation, Elsevier, Amsterdam/New York 2019.
S. A. Kearney, B. Mcluckie, K. Webb, R. Orr, I. A. Vatter, A. S. Yorkshire, C. L. Corkhill, M. Hayes, M. J. Angus, J. L. Provis, J. Nucl. Mater. 2020, 530, 151960.
D. C. Phillips, J. W. Hitchon, D. I. Johnson, J. R. Matthews, J. Nucl. Mater. 1984, 125, 202.
K.-W. Kim, R. I. Foster, J. Kim, H.-H. Sung, D. Yang, W.-J. Shon, M.-K. Oh, K.-Y. Lee, J. Nucl. Mater. 2019, 516, 238.
S. V. Yudintsev, M. S. Nickolsky, M. I. Ojovan, O. I. Stefanovsky, V. I. Malkovsky, A. S. Ulanova, L. R. Blackburn, Ceramics 2023, 6, 1573.
P. Szajerski, Chem. Eng. J. 2021, 404, 126495.
N. P. Laverov, S. V. Yudintsev, B. I. Omel'yanenko, Geol. Ore Deposits 2009, 51, 259.
Y. Zhang, L. Kong, M. Ionescu, D. J. Gregg, J. Eur. Ceram. Soc. 2022, 42, 1852.
C. Haertling, R. J. Hanrahan, J. Nucl. Mater. 2007, 366, 317.
M. Sessim, M. R. Tonks, Nuclear Technology 2021, 207, 1004.
Y. M. Kulyako, T. I. Trofimov, M. D. Samsonov, A. Y.. Shadrin, B. F. Myasoedov, Radiochemistry 2008, 50, 250.
R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature 1992, 360, 444.
M. Bar Sadan, M. Heidelmann, L. Houben, R. Tenne, Appl. Phys. A 2009, 96, 343.
A. Zak, L. Sallacan-Ecker, A. Margolin, M. Genut, R. Tenne, Nano 2009, 04, 91.
L. Rapoport, N. Fleischer, R. Tenne, Adv. Mater. 2003, 15, 651.
C. S. Reddy, A. Zak, E. Zussman, J. Mater. Chem. 2011, 21, 16086.
L. Yadgarov, B. Visic, T. Abir, R. Tenne, A. Y. Polyakov, R. Levi, T. V. Dolgova, V. V. Zubyuk, A. A. Fedyanin, E. A. Goodilin, T. Ellenbogen, R. Tenne, D. Oron, Phys. Chem. Chem. Phys. 2018, 20, 20812.
D. Ugarte, A. Châtelain, W. A. De Heer, Science 1996, 274, 1897.
O. Goldbart, S. R. Cohen, I. Kaplan-Ashiri, P. Glazyrina, H. D. Wagner, A. Enyashin, R. Tenne, Proc. Natl. Acad. Sci.. 2016, 113, 13624.
S. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green, Nature 1994, 372, 159.
R. Kreizman, S. Y. Hong, J. Sloan, R. Popovitz-Biro, A. Albu-Yaron, G. Tobias, B. Ballesteros, B. G. Davis, M. L. H. Green, R. Tenne, Angew. Chem., Int. Ed. 2009, 48, 1230.
S. Sandoval, E. Pach, B. Ballesteros, G. Tobias, Carbon 2017, 123, 129.
N. Thamavaranukup, H. A. Höppe, L. Ruiz-Gonzalez, P. M. F. J. Costa, J. Sloan, A. Kirkland, M. L. H. Green, Chem. Commun. 2004, 1686.
S. Bandi, A. K. Srivastav, J. Mater. Sci. 2021, 56, 6615.
E. R. Nazin, G. M. Zachinyaev, E. V. Belova, I. V. Skvortsov, B. F. Myasoedov, Radiochemistry 2019, 61, 665.
S. Hartland, R. J. Nesbitt, J. Appl. Chem. 2007, 14, 406.
C. R. Edwards, A. J. Oliver, JOM 2000, 52, 12.
R. D. Kozlova, V. A. Matyukha, N. V. Dedov, Radiochemistry 2007, 49, 130.
T. N. Filippov, D. A. Svintsitskiy, I. A. Chetyrin, I. P. Prosvirin, D. S. Selishchev, D. V. Kozlov, Appl. Catal., A 2018, 558, 81.
A. U. Olayiwola, H. Du, S.-N. Wang, B. Liu, Y. Q. Lv, B. Pan, Tungsten 2023, 5, 145.
V. Kundrat, A. Patak, J. Pinkas, J. Nucl. Mater. 2019, 528, 151877.
V. Kundrat, V. Vykoukal, Z. Moravec, L. Simonikova, K. Novotny, J. Pinkas, J. Alloys Compd. 2022, 900, 163542.
E. Lassner, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer, Berlin 2013.
S. Kobayashi, N. Hosoda, R. Takashima, Nucl. Instrum. Methods Phys. Res., Sect. A 1997, 390, 426.
R. C. O'brien, N. D. Jerred, J. Nucl. Mater. 2013, 433, 50.
M. Colella, G. R. Lumpkin, Z. Zhang, E. C. Buck, K. L. Smith, Phys Chem Minerals 2005, 32, 52.
F. Rouquerol, J. Rouquerol, K. S. W. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology, and Applications, Academic Press, San Diego 1999.
Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, (Eds:S. Lowell, J. E. Shields, M. A. Thomas, M. Thommes), Kluwer Academic Publishers, Dordrecht 2010.
J. Chen, S.-L. Li, F. Gao, Z.-L. Tao, Chem. Mater. 2003, 15, 1012.
P. Chithaiah, S. Ghosh, A. Idelevich, L. Rovinsky, T. Livneh, A. Zak, ACS Nano 2020, 14, 3004.