Half-value layer measurements using solid-state detectors and single-rotation technique with lead apertures in spiral computed tomography with and without a tin filter.

Half-value layer Single-rotation technique with lead apertures Solid-state detector X-ray CT system

Journal

Radiological physics and technology
ISSN: 1865-0341
Titre abrégé: Radiol Phys Technol
Pays: Japan
ID NLM: 101467995

Informations de publication

Date de publication:
21 Dec 2023
Historique:
received: 27 09 2023
accepted: 27 11 2023
revised: 08 11 2023
medline: 21 12 2023
pubmed: 21 12 2023
entrez: 21 12 2023
Statut: aheadofprint

Résumé

Solid-state detectors (SSDs) may be used along with a lead collimator for half-value layer (HVL) measurement using computed tomography (CT) with or without a tin filter. We aimed to compare HVL measurements obtained using three SSDs (AGMS-DM+ , X2 R/F sensor, and Black Piranha) with those obtained using the single-rotation technique with lead apertures (SRTLA). HVL measurements were performed using spiral CT at tube voltages of 70-140 kV without a tin filter and 100-140 kV (Sn 100-140 kV) with a tin filter in increments of 10 kV. For SRTLA, a 0.6-cc ionization chamber was suspended at the isocenter to measure the free-in-air kerma rate ([Formula: see text]) values. Five apertures were made on the gantry cover using lead sheets, and four aluminum plates were placed on these apertures. HVLs in SRTLA were obtained from [Formula: see text] decline curves. Subsequently, SSDs inserted into the lead collimator were placed on the gantry cover and used to measure HVLs. Maximum HVL differences of AGMS-DM+ , X2 R/F sensor, and Black Piranha with respect to SRTLA without/with a tin filter were - 0.09/0.6 (only two Sn 100-110 kV) mm, - 0.50/ - 0.6 mm, and - 0.17/(no data available) mm, respectively. These values were within the specification limit. SSDs inserted into the lead collimator could be used to measure HVL using spiral CT without a tin filter. HVLs could be measured with a tin filter using only the X2 R/F sensor, and further improvement of its calibration accuracy with respect to other SSDs is warranted.

Identifiants

pubmed: 38127219
doi: 10.1007/s12194-023-00767-6
pii: 10.1007/s12194-023-00767-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Japanese Society of Radiological Technology and Japan Society of Medical Physics.

Références

Zeman RK, Fox SH, Silverman PM, et al. Helical (spiral) CT of the abdomen. AJR Am J Roentgenol. 1993;160:719–25. https://doi.org/10.2214/ajr.160.4.8456652 .
doi: 10.2214/ajr.160.4.8456652 pubmed: 8456652
Hu H. Multi-slice helical CT: scan and reconstruction. Med Phys. 1999;26:5–18. https://doi.org/10.1118/1.598470 .
doi: 10.1118/1.598470 pubmed: 9949393
Taguchi K, Aradate H. Algorithm for image reconstruction in multi-slice helical CT. Med Phys. 1998;25:550–61. https://doi.org/10.1118/1.598230 .
doi: 10.1118/1.598230 pubmed: 9571623
Fukuda A, Lin PJ, Matsubara K, Miyati T. Measurement of gantry rotation time in modern ct. J Appl Clin Med Phys. 2014;15:4517. https://doi.org/10.1120/jacmp.v15i1.4517 .
doi: 10.1120/jacmp.v15i1.4517 pubmed: 24423850
Bodelle B, Fischbach C, Booz C, et al. Single-energy pediatric chest computed tomography with spectral filtration at 100 kVp: effects on radiation parameters and image quality. Pediatr Radiol. 2017;47:831–7. https://doi.org/10.1007/s00247-017-3813-1 .
doi: 10.1007/s00247-017-3813-1 pubmed: 28352977
Steidel J, Maier J, Sawall S, Kachelrieß M. Dose reduction potential in diagnostic single energy CT through patient-specific prefilters and a wider range of tube voltages. Med Phys. 2022;49:93–106. https://doi.org/10.1002/mp.15355 .
doi: 10.1002/mp.15355 pubmed: 34796532
Mozaffary A, Trabzonlu TA, Kim D, Yaghmai V. Comparison of tin filter-based spectral shaping CT and low-dose protocol for detection of urinary calculi. AJR Am J Roentgenol. 2019;212(4):808–14. https://doi.org/10.2214/AJR.18.20154 .
doi: 10.2214/AJR.18.20154 pubmed: 30673337
Zhou W, Malave MN, Maloney JA, et al. Radiation dose reduction using spectral shaping in pediatric non-contrast sinus CT. Pediatr Radiol. 2023;53(10):2069–78. https://doi.org/10.1007/s00247-023-05699-2 .
doi: 10.1007/s00247-023-05699-2 pubmed: 37341726
Choi YS, Choo HJ, Lee SJ, Kim DW, Han JY, Kim DS. Computed tomography arthrography of the shoulder with tin filter-based spectral shaping at 100 kV and 140 kV. Acta Radiol. 2021;62(10):1349–57. https://doi.org/10.1177/0284185120965551 .
doi: 10.1177/0284185120965551 pubmed: 33070634
Huflage H, Grunz JP, Hackenbroch C, et al. Metal artefact reduction in low-dose computed tomography: Benefits of tin prefiltration versus postprocessing of dual-energy datasets over conventional CT imaging. Radiography (Lond). 2022;28(3):690–6. https://doi.org/10.1016/j.radi.2022.05.006 .
doi: 10.1016/j.radi.2022.05.006 pubmed: 35728278
Samei E, Bakalyar D, Boedeker KL, et al. Performance evaluation of computed tomography systems: summary of AAPM Task Group 233. Med Phys. 2019;46:e735–56. https://doi.org/10.1002/mp.13763 .
doi: 10.1002/mp.13763 pubmed: 31408540
Kruger RL, McCollough CH, Zink FE. Measurement of half-value layer in x-ray CT: a comparison of two noninvasive techniques. Med Phys. 2000;27:1915–9. https://doi.org/10.1118/1.1287440 .
doi: 10.1118/1.1287440 pubmed: 10984237
Japanese Industrial Standards. JIS Z 4751-2-44: 2018, Medical electrical equipment - Part 2-44: Particular requirements for the basic safety and essential performance of X-ray equipment for computed tomography. Japanese standards association. 2018.
Matsubara K, Lin PP, Fukuda A, Koshida K. Differences in behavior of tube current modulation techniques for thoracic CT examinations between male and female anthropomorphic phantoms. Radiol Phys Technol. 2014;7:316–28. https://doi.org/10.1007/s12194-014-0269-y .
doi: 10.1007/s12194-014-0269-y pubmed: 24862530
Bazalova M, Verhaegen F. Monte Carlo simulation of a computed tomography x-ray tube. Phys Med Biol. 2007;52(19):5945–55. https://doi.org/10.1088/0031-9155/52/19/015 .
doi: 10.1088/0031-9155/52/19/015 pubmed: 17881811
McKenney SE, Seibert JA, Burkett GW, et al. Real-time dosimeter employed to evaluate the half-value layer in CT. Phys Med Biol. 2014;59:363–77. https://doi.org/10.1088/0031-9155/59/2/363 .
doi: 10.1088/0031-9155/59/2/363 pubmed: 24351935
Fukuda A, Ichikawa N, Tashiro M, Yamao T, Murakami K, Kubo H. Measurement of the half-value layer for CT systems in a single-rotation technique: reduction of stray radiation with lead apertures. Phys Med. 2020;76:221–6. https://doi.org/10.1016/j.ejmp.2020.07.004 .
doi: 10.1016/j.ejmp.2020.07.004 pubmed: 32717701
Okkalides D, Arvanitides D. Aberrations in X-ray output waveforms of radiological generators. Eur J Radiol. 1992;15:248–51. https://doi.org/10.1016/0720-048x(92)90117-r .
doi: 10.1016/0720-048x(92)90117-r pubmed: 1490452
Lin PP, Goode AR. Accuracy of HVL measurements utilizing solid state detectors for radiography and fluoroscopy X-ray systems. J Appl Clin Med Phys. 2021;22:339–44. https://doi.org/10.1002/acm2.13389 .
doi: 10.1002/acm2.13389 pubmed: 34375033 pmcid: 8425946
Akaishi H, Takeda H, Kanazawa Y, Yoshii Y, Asanuma O. Development of a lead-covered case for a wireless X-ray output analyzer to perform CT half-value layer measurements. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2016;72:244–50. https://doi.org/10.6009/jjrt.2016_JSRT_72.3.244 .
doi: 10.6009/jjrt.2016_JSRT_72.3.244 pubmed: 27000673
Moriwake R, Takei Y, Kuroda T, Ikenaga H. Experiment of a dedicated lead slit for X-ray output analyzer in X-ray CT half-value layer measurements. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2022;78:152–8. https://doi.org/10.6009/jjrt.780202 .
doi: 10.6009/jjrt.780202 pubmed: 35185094
Giavarina D. Understanding Bland Altman analysis. Biochem Med (Zagreb). 2015;25(2):141–51. https://doi.org/10.11613/BM.2015.015 . (eCollection 2015).
doi: 10.11613/BM.2015.015 pubmed: 26110027 pmcid: 4470095
Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126:1763–8. https://doi.org/10.1213/ANE.0000000000002864 .
doi: 10.1213/ANE.0000000000002864 pubmed: 29481436
The R project for statistical computing. https://www.r-project.org/ . Accessed 13 Jan 2023.
Greffier J, Pereira F, Hamard A, Addala T, Beregi JP, Frandon J. Effect of tin filter-based spectral shaping CT on image quality and radiation dose for routine use on ultralow-dose CT protocols: a phantom study. Diagn Interv Imaging. 2020;101(6):373–81. https://doi.org/10.1016/j.diii.2020.01.002 .
doi: 10.1016/j.diii.2020.01.002 pubmed: 32008994
Fukuda A, Lin PP, Ichikawa N, Matsubara K. Estimation of primary radiation output for wide-beam computed tomography scanner. J Appl Clin Med Phys. 2019;20(6):152–9. https://doi.org/10.1002/acm2.12598 .
doi: 10.1002/acm2.12598 pubmed: 31050131 pmcid: 6560250
Unfors T. Detector for detecting x-ray radiation parameters. US patent No. 9405021. 2016. https://www.freepatentsonline.com/9405021.html . Accessed 13 Jan 2023.
Nomura K, Fujii K, Goto T, et al. Radiation dose reduction for computed tomography localizer radiography using an Ag additional filter. J Comput Assist Tomogr. 2021;45:84–92. https://doi.org/10.1097/RCT.0000000000001026 .
doi: 10.1097/RCT.0000000000001026 pubmed: 33475316
Zhou LN, Zhao SJ, Wang RB, Wang YW, Yang SX, Wu N. Comparison of radiation dose and image quality between split-filter twin-beam dual-energy images and single-energy images in single-source contrast-enhanced chest computed tomography. J Comput Assist Tomogr. 2021;45:888–93. https://doi.org/10.1097/RCT.0000000000001220 .
doi: 10.1097/RCT.0000000000001220 pubmed: 34469908
Mahoney R, Pavitt CW, Gordon D, et al. Clinical validation of dual-source dual-energy computed tomography (DECT) for coronary and valve imaging in patients undergoing trans-catheter aortic valve implantation (TAVI). Clin Radiol. 2014;69:786–94. https://doi.org/10.1016/j.crad.2014.03.010 .
doi: 10.1016/j.crad.2014.03.010 pubmed: 24842399
Matsubara K, Nagata H, Okubo R, Takata T, Kobayashi M. Method for determining the half-value layer in computed tomography scans using a real-time dosimeter: application to dual-source dual-energy acquisition. Phys Med. 2017;44:227–31. https://doi.org/10.1016/j.ejmp.2017.10.020 .
doi: 10.1016/j.ejmp.2017.10.020 pubmed: 29111386

Auteurs

Atsushi Fukuda (A)

Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima, Fukushima, 960-1295, Japan. ntoki@blue.plala.or.jp.

Nao Ichikawa (N)

Department of Radiological Technology, Faculty of Health Science, Kobe Tokiwa University, 2-6-2 Otani-cho, Kobe, Hyogo, 653-0838, Japan.

Takuma Hayashi (T)

Department of Radiation Oncology, Shiga General Hospital, 5-4-30 Moriyama, Moriyama, Shiga, 524-8524, Japan.

Ayaka Hirosawa (A)

Department of Medical Technology, Toyama Prefectural Central Hospital, 2-2-78 Nishinagae, Toyama, 930-8550, Japan.

Kosuke Matsubara (K)

Department of Quantum Medical Technology, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan.

Classifications MeSH