PCO2 Gradient Between Inlet and Outlet Blood of Extracorporeal Respiratory Support is a Reliable Marker of CO2 Elimination.


Journal

ASAIO journal (American Society for Artificial Internal Organs : 1992)
ISSN: 1538-943X
Titre abrégé: ASAIO J
Pays: United States
ID NLM: 9204109

Informations de publication

Date de publication:
22 Dec 2023
Historique:
medline: 21 12 2023
pubmed: 21 12 2023
entrez: 21 12 2023
Statut: aheadofprint

Résumé

Our objective was to assess the relationship between the pre-/post-oxygenator gradient of the partial pressure of carbon dioxide (∆EC PCO2; dissolved form) and CO2 elimination under extracorporeal respiratory support. All patients who were treated with veno-venous extracorporeal membrane oxygenation and high-flow extracorporeal CO2 removal in our intensive care unit over 18 months were included. Pre-/post-oxygenator blood gases were collected every 12 h and CO2 elimination was calculated for each pair of samples (pre-/post-oxygenator total carbon dioxide content in blood [ctCO2] × pump flow [extracorporeal pump flow {QEC}]). The relationship between ∆EC PCO2 and CO2 elimination, as well as the origin of CO2 removed. Eighteen patients were analyzed (24 oxygenators and 293 datasets). Each additional unit of ∆EC PCO2 × QEC was associated with an increase in CO2 elimination of 5.2 ml (95% confidence interval [CI], 4.7-5.6 ml; p < 0.001). Each reduction of 1 ml STPD/dl of CO2 across the oxygenator was associated with a reduction of 0.63 ml STPD/dl (95% CI, 0.60-0.66) of CO2 combined with water, 0.08 ml STPD/dl (95% CI, 0.07-0.09) of dissolved CO2, and 0.29 ml STPD/dl (95% CI, 0.27-0.31) of CO2 in erythrocytes. The pre-/post-oxygenator PCO2 gradient under extracorporeal respiratory support is thus linearly associated with CO2 elimination; however, most of the CO2 removed comes from combined CO2 in plasma, generating bicarbonate.

Identifiants

pubmed: 38127592
doi: 10.1097/MAT.0000000000002122
pii: 00002480-990000000-00375
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

Copyright © ASAIO 2023.

Déclaration de conflit d'intérêts

Disclosure: The authors have no conflicts of interest to report.

Références

Arthurs G, Sudhakar M: Carbon dioxide transport. Cont Educ Anaesth Crit Care Pain 5: 207–210, 2005.
Higgins C: Parameters that reflect the carbon dioxide content of blood, 2008. 2017. https://acutecaretesting.org/-/media/acutecaretesting/files/pdf/parameters-that-reflect-the-carbon-dioxide-content-of-blood.pdf.
Geers C, Gros G: Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev 80: 681–715, 2000.
Siggaard-Andersen O, Wimberley P, Fogh-Andersen N, Gothgen I: Measured and derived quantities with modern pH and blood gas equipment: Calculation algorithms with 54 equations. Scand J Clin Lab Invest 48: 7–15, 1988.
Douglas AR, Jones NL, Reed JW: Calculation of whole blood CO2 content. J App Physiol 65: 473–477, 1988.
Combes A, Peek G, Hajage D, et al.: ECMO for severe ARDS: Systematic review and individual patient data meta-analysis. Intensive Care Med 46: 2048–2057, 2020.
Mosier J, Kelsey M, Raz Y, et al.: Extracorporeal membrane oxygenation (ECMO) for critically ill adults in the emergency department: History, current applications, and future directions. Crit Care 19: 431, 2015.
Combes A, Fanelli V, Pham T, Ranieri VM; European Society of Intensive Care Medicine Trials Group and the “Strategy of Ultra-Protective Lung Ventilation With Extracorporeal CO2 Removal for New-Onset Moderate to Severe ARDS” (SUPERNOVA) Investigators: Feasibility and safety of extracorporeal CO2 removal to enhance protective ventilation in acute respiratory distress syndrome: The SUPERNOVA study. Intensive Care Med 45: 592–600, 2019.
Combes A, Auzinger G, Capellier G, et al.: ECCO2R therapy in the ICU: Consensus of a European round table meeting. Crit Care 24: 490, 2020.
Sun L, Kaesler A, Fernando P, Thompson A, Toomasian J, Bartlett R: CO2 clearance by membrane lungs. Perfusion 33: 249–253, 2018.
Strassmann S, Merten M, Schäfer S, et al.: Impact of sweep gas flow on extracorporeal CO2 removal (ECCO2R). Intensive Care Med Exp 7: 17, 2019.
Karagiannidis C, Kampe KA, Sipmann FS, et al.: Veno-venous extracorporeal CO2 removal for the treatment of severe respiratory acidosis: Pathophysiological and technical considerations. Crit Care 18: R124, 2014.
Zakhary B, Sheldrake J, Pellegrino V: Extracorporeal membrane oxygenation and V/Q ratios: An ex vivo analysis of CO2 clearance within the Maquet Quadrox-iD oxygenator. Perfusion 35: 29–33, 2020.
Laumon T, Courvalin E, Dagod G, et al.: Performance of the decarboxylation index to predict CO2 removal and minute ventilation reduction under extracorporeal respiratory support. Artif Organs 47: 854–863, 2023.
Schmidt M, Tachon G, Devilliers C, et al.: Blood oxygenation and decarboxylation determinants during venovenous ECMO for respiratory failure in adults. Intensive Care Med 39: 838–846, 2013.
Charbit J, Courvalin E, Dagod G, et al.: Mathematical modelling of oxygenation under veno-venous ECMO configuration using either a femoral or a bicaval drainage. Intensive Care Med Exp 10: 10, 2022.
Charbit J, Deras P, Courvalin E, et al.: Structural recirculation and refractory hypoxemia under femoro-jugular veno-venous extracorporeal membrane oxygenation. Artif Organs 45: 893–902, 2021.
Fanelli V, Ranieri MV, Mancebo J, et al.: Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress syndrome. Crit Care 20: 36, 2016.
Schmidt M, Jaber S, Zogheib E, Godet T, Capellier G, Combes A: Feasibility and safety of low-flow extracorporeal CO2 removal managed with a renal replacement platform to enhance lung-protective ventilation of patients with mild-to-moderate ARDS. Crit Care 22: 122, 2018.
Epis F, Belliato M: Oxygenator performance and artificial-native lung interaction. J Thorac Dis 10: S596–S605, 2018.
Singer R, Hastings A: An improved clinical method for the estimation of disturbances of the acid-base balance of human blood. Medicine (Baltimore) 27: 223–242, 1948.
Visser B: Pulmonary diffusion of carbon dioxide. Phys Med Biol 5: 155–166, 1960.
Meldrum N, Roughton F: Carbonic anhydrase. Its preparation and properties. J Physiol 80: 113–142, 1933.
Meldrum N, Roughton F: The state of carbon dioxide in blood. J Physiol 80: 143–170, 1933.
Geers C, Gros G: Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev 80: 681–715, 2000.
Slyke D, Sendroy V, Sendroy J: Studies of gas and electrolyte equilibria in blood xv Line charts for graphic calculations by the Henderson-Hasselbalch equation, and for calculating plasma carbon dioxide content from whole blood content. J Biol Chem 79: 781–798, 1928.
McHardy G: The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood. Clin Sci 32: 299–309, 1967.
Karagiannidis C, Strassmann S, Brodie D, et al.: Impact of membrane lung surface area and blood flow on extracorporeal CO2 removal during severe respiratory acidosis. Intensive Care Med Exp 5: 34, 2017.
Barrett N, Hart N, Camporota L: In vivo carbon dioxide clearance of a low-flow extracorporeal carbon dioxide removal circuit in patients with acute exacerbations of chronic obstructive pulmonary disease. Perfusion 35: 436–441, 2020.
Martucci G, Schmidt M, Agerstrand C, et al.; International ECMO Network (ECMONet): Transfusion practice in patients receiving VV ECMO (PROTECMO): A prospective, multicentre, observational study. Lancet Respir Med 11: 245–255, 2023.
Montalti A, Belliato M, Gelsomino S, et al.: Continuous monitoring of membrane lung carbon dioxide removal during ECMO: Experimental testing of a new volumetric capnometer. Perfusion 34: 538–543, 2019.
Cove M, Vu LH, Ring T, Federspiel W, Kellum J: Respiratory dialysis—A novel low bicarbonate dialysate to provide extracorporeal CO2 removal. Crit Care Med 48: e592–e598, 2020.
Cove M, Vu LH, Ring T, May A, Federspiel W, Kellum J: A proof of concept study, demonstrating extracorporeal carbon dioxide removal using hemodialysis with a low bicarbonate dialysate. ASAIO J 65: 605–613, 2019.
Teboul JL, Scheeren T: Understanding the Haldane effect. Intensive Care Med 43: 91–93, 2017.

Auteurs

Jonathan Charbit (J)

From the Trauma and Polyvalent Critical Care Unit, Montpellier University Hospital, Montpellier, France.
institut Desbrest d'épidémiologie et de santé publique, institut national de la santé et de la recherche médicale, University of Montpellier, Montpellier University Hospital, Montpellier, France.

Elie Courvalin (E)

From the Trauma and Polyvalent Critical Care Unit, Montpellier University Hospital, Montpellier, France.

Geoffrey Dagod (G)

From the Trauma and Polyvalent Critical Care Unit, Montpellier University Hospital, Montpellier, France.

Thomas Laumon (T)

From the Trauma and Polyvalent Critical Care Unit, Montpellier University Hospital, Montpellier, France.

Samy Hammani (S)

From the Trauma and Polyvalent Critical Care Unit, Montpellier University Hospital, Montpellier, France.

Nicolas Molinari (N)

institut Desbrest d'épidémiologie et de santé publique, institut national de la santé et de la recherche médicale, University of Montpellier, Montpellier University Hospital, Montpellier, France.

Xavier Capdevila (X)

From the Trauma and Polyvalent Critical Care Unit, Montpellier University Hospital, Montpellier, France.

Classifications MeSH