CODA: an open-source platform for federated analysis and machine learning on distributed healthcare data.

biomedical analytics distributed computing federated learning healthcare data management machine learning predictive models resource usage analysis

Journal

Journal of the American Medical Informatics Association : JAMIA
ISSN: 1527-974X
Titre abrégé: J Am Med Inform Assoc
Pays: England
ID NLM: 9430800

Informations de publication

Date de publication:
21 Dec 2023
Historique:
received: 26 06 2023
revised: 28 10 2023
accepted: 02 12 2023
medline: 21 12 2023
pubmed: 21 12 2023
entrez: 21 12 2023
Statut: aheadofprint

Résumé

Distributed computations facilitate multi-institutional data analysis while avoiding the costs and complexity of data pooling. Existing approaches lack crucial features, such as built-in medical standards and terminologies, no-code data visualizations, explicit disclosure control mechanisms, and support for basic statistical computations, in addition to gradient-based optimization capabilities. We describe the development of the Collaborative Data Analysis (CODA) platform, and the design choices undertaken to address the key needs identified during our survey of stakeholders. We use a public dataset (MIMIC-IV) to demonstrate end-to-end multi-modal FL using CODA. We assessed the technical feasibility of deploying the CODA platform at 9 hospitals in Canada, describe implementation challenges, and evaluate its scalability on large patient populations. The CODA platform was designed, developed, and deployed between January 2020 and January 2023. Software code, documentation, and technical documents were released under an open-source license. Multi-modal federated averaging is illustrated using the MIMIC-IV and MIMIC-CXR datasets. To date, 8 out of the 9 participating sites have successfully deployed the platform, with a total enrolment of >1M patients. Mapping data from legacy systems to FHIR was the biggest barrier to implementation. The CODA platform was developed and successfully deployed in a public healthcare setting in Canada, with heterogeneous information technology systems and capabilities. Ongoing efforts will use the platform to develop and prospectively validate models for risk assessment, proactive monitoring, and resource usage. Further work will also make tools available to facilitate migration from legacy formats to FHIR and DICOM.

Identifiants

pubmed: 38128123
pii: 7486840
doi: 10.1093/jamia/ocad235
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : CIHR
ID : 172742
Pays : Canada

Informations de copyright

© The Author(s) 2023. Published by Oxford University Press on behalf of the American Medical Informatics Association.

Auteurs

Louis Mullie (L)

Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montréal, H2X 3E4, Canada.
Faculty of Medicine, Université de Montréal, Montréal, H3C 3J7, Canada.
Mila Quebec Artificial Intelligence Institute, Montréal, H2S 3H1, Canada.

Jonathan Afilalo (J)

Department of Medicine, Jewish General Hospital, Montréal, H3T 1E4, Canada.

Patrick Archambault (P)

Department of Emergency Medicine and Family Medicine, Université Laval, Québec, G1V 0A6, Canada.
Department of Anesthesiology and Critical Care Medicine, Université Laval, Québec, G1V 0A6, Canada.
Centre de Recherche Intégré pour un Système Apprenant en santé et Services Sociaux, Centre intégré de santé et de Services Sociaux de Chaudière-Appalaches, Lévis, G6V 3Z1, Canada.

Rima Bouchakri (R)

Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, H2X 0A9, Canada.

Kip Brown (K)

Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, H2X 0A9, Canada.

David L Buckeridge (DL)

Mila Quebec Artificial Intelligence Institute, Montréal, H2S 3H1, Canada.
Department of Epidemiology and Biostatistics, School of Population and Global Health, McGill University Health Centre, Montréal, H3A 1G1, Canada.

Yiorgos Alexandros Cavayas (YA)

Department of Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, H4J 1C5, Canada.

Alexis F Turgeon (AF)

Department of Anesthesiology and Critical Care Medicine, Université Laval, Québec, G1V 0A6, Canada.
Centre de recherche du CHU de Québec-Université Laval, Université Laval, Québec, G1V 4G2, Canada.

Denis Martineau (D)

Centre de recherche du CHU de Québec-Université Laval, Université Laval, Québec, G1V 4G2, Canada.

François Lamontagne (F)

Centre de recherche du CHUS, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, J1G 2E8, Canada.

Martine Lebrasseur (M)

Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, H2X 0A9, Canada.

Renald Lemieux (R)

Centre de recherche du CHUS, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, J1G 2E8, Canada.

Jeffrey Li (J)

Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, H2X 0A9, Canada.

Michaël Sauthier (M)

Faculty of Medicine, Université de Montréal, Montréal, H3C 3J7, Canada.
Department of Pediatrics, Université de Montréal and CHU Sainte-Justine Research Centre, Montréal, H3C 3J7, Canada.

Pascal St-Onge (P)

Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, H2X 0A9, Canada.

An Tang (A)

Faculty of Medicine, Université de Montréal, Montréal, H3C 3J7, Canada.
Department of Radiology, Centre Hospitalier de l'Université de Montréal, Montréal, H2X 3E4, Canada.

William Witteman (W)

Centre de Recherche Intégré pour un Système Apprenant en santé et Services Sociaux, Centre intégré de santé et de Services Sociaux de Chaudière-Appalaches, Lévis, G6V 3Z1, Canada.

Michaël Chassé (M)

Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montréal, H2X 3E4, Canada.
Faculty of Medicine, Université de Montréal, Montréal, H3C 3J7, Canada.

Classifications MeSH