Mitochondrial impairment, decreased sirtuin activity and protein acetylation in dorsal root ganglia in Friedreich Ataxia models.

FXNI151F mice model Honokiol Redox state, mitochondrial dysfunction Sensory neurons SirT3

Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
21 Dec 2023
Historique:
received: 17 05 2023
accepted: 25 11 2023
revised: 16 11 2023
medline: 22 12 2023
pubmed: 22 12 2023
entrez: 21 12 2023
Statut: epublish

Résumé

Friedreich ataxia (FA) is a rare, recessive neuro-cardiodegenerative disease caused by deficiency of the mitochondrial protein frataxin. Mitochondrial dysfunction, a reduction in the activity of iron-sulfur enzymes, iron accumulation, and increased oxidative stress have been described. Dorsal root ganglion (DRG) sensory neurons are among the cellular types most affected in the early stages of this disease. However, its effect on mitochondrial function remains to be elucidated. In the present study, we found that in primary cultures of DRG neurons as well as in DRGs from the FXN

Identifiants

pubmed: 38129330
doi: 10.1007/s00018-023-05064-4
pii: 10.1007/s00018-023-05064-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

12

Subventions

Organisme : Ministerio de Economía y Competitividad
ID : PN-P21018
Organisme : Ministerio de Economía y Competitividad
ID : PDC-N21019
Organisme : Direcció General de Recerca, Generalitat de Catalunya
ID : SGR2009-00196

Informations de copyright

© 2023. The Author(s).

Références

Campuzano V, Montermini L, Moltò MD et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427. https://doi.org/10.1126/SCIENCE.271.5254.1423
doi: 10.1126/SCIENCE.271.5254.1423 pubmed: 8596916
Galea CA, Huq A, Lockhart PJ et al (2016) Compound heterozygous FXN mutations and clinical outcome in friedreich ataxia. Ann Neurol 79:485–495. https://doi.org/10.1002/ANA.24595
doi: 10.1002/ANA.24595 pubmed: 26704351
Gervason S, Larkem D, Mansour Ben A et al (2019) Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Nat Commun. https://doi.org/10.1038/S41467-019-11470-9
doi: 10.1038/S41467-019-11470-9 pubmed: 31395877 pmcid: 6687725
Alsina D, Purroy R, Ros J, Tamarit J (2018) Iron in friedreich ataxia: a central role in the pathophysiology or an epiphenomenon? Pharmaceuticals. 11:89
doi: 10.3390/ph11030089 pubmed: 30235822 pmcid: 6161073
Gottesfeld JM (2019) Molecular mechanisms and therapeutics for the GAA·TTC expansion disease Friedreich Ataxia. Neurotherapeutics 16:1032–1049. https://doi.org/10.1007/S13311-019-00764-X
doi: 10.1007/S13311-019-00764-X pubmed: 31317428 pmcid: 6985418
Pandolfo M (1998) Molecular genetics and pathogenesis of Friedreich ataxia. Neuromuscul Disord 8:409–415. https://doi.org/10.1016/S0960-8966(98)00039-X
doi: 10.1016/S0960-8966(98)00039-X pubmed: 9713860
Simon D, Seznec H, Gansmuller A et al (2004) Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. J Neurosci 24:1987–1995. https://doi.org/10.1523/JNEUROSCI.4549-03.2004
doi: 10.1523/JNEUROSCI.4549-03.2004 pubmed: 14985441 pmcid: 6730414
Koeppen AH (2011) Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci 303:1–12. https://doi.org/10.1016/J.JNS.2011.01.010
doi: 10.1016/J.JNS.2011.01.010 pubmed: 21315377 pmcid: 3062632
Koeppen AH, Becker AB, Qian J et al (2017) Friedreich Ataxia: developmental failure of the dorsal root entry zone. J Neuropathol Exp Neurol 76:969–977. https://doi.org/10.1093/JNEN/NLX087
doi: 10.1093/JNEN/NLX087 pubmed: 29044418 pmcid: 6440497
Mincheva-Tasheva S, Obis E, Tamarit J, Ros J (2014) Apoptotic cell death and altered calcium homeostasis caused by frataxin depletion in dorsal root ganglia neurons can be prevented by BH4 domain of Bcl-x L protein. Hum Mol Genet 23:1829–1841. https://doi.org/10.1093/hmg/ddt576
doi: 10.1093/hmg/ddt576 pubmed: 24242291
Britti E, Delaspre F, Tamarit J, Ros J (2021) Calpain-inhibitors protect frataxin-deficient dorsal root ganglia neurons from loss of mitochondrial Na+/Ca2+ exchanger, NCLX, and apoptosis. Neurochem Res 46:108–119. https://doi.org/10.1007/s11064-020-03020-3
doi: 10.1007/s11064-020-03020-3 pubmed: 32249386
Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282. https://doi.org/10.1038/S41580-020-00324-8
doi: 10.1038/S41580-020-00324-8 pubmed: 33495651 pmcid: 8142022
la Rosa P, Petrillo S, Fiorenza MT et al (2020) Ferroptosis in Friedreich’s Ataxia: a metal-induced neurodegenerative disease. Biomolecules 10:1–15. https://doi.org/10.3390/BIOM10111551
doi: 10.3390/BIOM10111551
Grazia Cotticelli M, Xia S, Lin D et al (2019) Ferroptosis as a novel therapeutic target for Friedreich’s Ataxia. J Pharmacol Exp Ther 369:47–54. https://doi.org/10.1124/JPET.118.252759
doi: 10.1124/JPET.118.252759 pubmed: 30635474
Purroy R, Britti E, Delaspre F et al (2018) Mitochondrial pore opening and loss of Ca2 + exchanger NCLX levels occur after frataxin depletion. Biochim Biophys Acta Mol Basis Dis 1864:618–631. https://doi.org/10.1016/j.bbadis.2017.12.005
doi: 10.1016/j.bbadis.2017.12.005 pubmed: 29223733
Jiang D-Q, Wang Y, Li M-X et al (2017) SIRT3 in neural stem cells attenuates microglia activation-induced oxidative stress injury through mitochondrial pathway. Front Cell Neurosci 11:7. https://doi.org/10.3389/fncel.2017.00007
doi: 10.3389/fncel.2017.00007 pubmed: 28197079 pmcid: 5281640
Yang W, Nagasawa K, Münch C et al (2016) Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell 167:985-1000.e21. https://doi.org/10.1016/J.CELL.2016.10.016
doi: 10.1016/J.CELL.2016.10.016 pubmed: 27881304 pmcid: 5134900
Schwer B, North BJ, Frye RA et al (2002) The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 158:647–657. https://doi.org/10.1083/JCB.200205057
doi: 10.1083/JCB.200205057 pubmed: 12186850 pmcid: 2174009
Parodi-Rullán RM, Chapa-Dubocq XR, Javadov S (2018) Acetylation of mitochondrial proteins in the heart: the role of SIRT3. Front Physiol. https://doi.org/10.3389/fphys.2018.01094
doi: 10.3389/fphys.2018.01094 pubmed: 30131726 pmcid: 6090200
Bheda P, Jing H, Wolberger C, Lin H (2016) The substrate specificity of sirtuins. Annu Rev Biochem 85:405–429. https://doi.org/10.1146/annurev-biochem-060815-014537
doi: 10.1146/annurev-biochem-060815-014537 pubmed: 27088879
Lombard DB, Alt FW, Cheng H-L et al (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27:8807–8814. https://doi.org/10.1128/MCB.01636-07
doi: 10.1128/MCB.01636-07 pubmed: 17923681 pmcid: 2169418
Finley LWS, Haas W, Desquiret-Dumas V et al (2011) Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One. https://doi.org/10.1371/JOURNAL.PONE.0023295
doi: 10.1371/JOURNAL.PONE.0023295 pubmed: 22087332 pmcid: 3210788
Hirschey MD, Shimazu T, Goetzman E et al (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464:121–125. https://doi.org/10.1038/NATURE08778
doi: 10.1038/NATURE08778 pubmed: 20203611 pmcid: 2841477
Verdin E, Hirschey MD, Finley LWS, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35:669–675. https://doi.org/10.1016/J.TIBS.2010.07.003
doi: 10.1016/J.TIBS.2010.07.003 pubmed: 20863707 pmcid: 2992946
Stram AR, Wagner GR, Fogler BD et al (2017) Progressive mitochondrial protein lysine acetylation and heart failure in a model of Friedreich’s Ataxia cardiomyopathy. PLoS ONE 12:e0178354. https://doi.org/10.1371/journal.pone.0178354
doi: 10.1371/journal.pone.0178354 pubmed: 28542596 pmcid: 5444842
Chen T, Li J, Liu J et al (2015) Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway. Am J Physiol Heart Circ Physiol 308:H424–H434. https://doi.org/10.1152/AJPHEART.00454.2014
doi: 10.1152/AJPHEART.00454.2014 pubmed: 25527776
Reverdy C, Gitton G, Guan X et al (2022) Discovery of novel compounds as potent activators of Sirt3. Bioorg Med Chem 73:116999. https://doi.org/10.1016/J.BMC.2022.116999
doi: 10.1016/J.BMC.2022.116999 pubmed: 36191547
Pillai VB, Kanwal A, Fang YH et al (2017) Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget. 8:34082–34098. https://doi.org/10.18632/ONCOTARGET.16133
doi: 10.18632/ONCOTARGET.16133 pubmed: 28423723 pmcid: 5470953
Medina-Carbonero M, Sanz-Alcázar A, Britti E et al (2022) Mice harboring the FXN I151F pathological point mutation present decreased frataxin levels, a Friedreich ataxia-like phenotype, and mitochondrial alterations. Cell Mol Life Sci 79:1–20. https://doi.org/10.1007/s00018-021-04100-5
doi: 10.1007/s00018-021-04100-5
Sleigh JN, West SJ, Schiavo G (2020) A video protocol for rapid dissection of mouse dorsal root ganglia from defined spinal levels. BMC Res Notes 13:1–6. https://doi.org/10.1186/S13104-020-05147-6/FIGURES/3
doi: 10.1186/S13104-020-05147-6/FIGURES/3
Britti E, Delaspre F, Sanz-Alcázar A et al (2021) Calcitriol increases frataxin levels and restores mitochondrial function in cell models of Friedreich Ataxia. Biochem J 478:1–20. https://doi.org/10.1042/BCJ20200331
doi: 10.1042/BCJ20200331 pubmed: 33305808
Böhm M, Papezova H, Hansikova H et al (2007) Activities of respiratory chain complexes in isolated platelets in females with anorexia nervosa. Int J Eat Disord 40:659–663. https://doi.org/10.1002/EAT.20403
doi: 10.1002/EAT.20403 pubmed: 17584871
Shepherd D, Garland PB (1969) The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J 114:597–610. https://doi.org/10.1042/BJ1140597
doi: 10.1042/BJ1140597 pubmed: 5820645 pmcid: 1184933
Vorgerd M, Schöls L, Hardt C et al (2000) Mitochondrial impairment of human muscle in Friedreich ataxia in vivo. Neuromuscul Disord 10:430–435. https://doi.org/10.1016/S0960-8966(00)00108-5
doi: 10.1016/S0960-8966(00)00108-5 pubmed: 10899450
Bradley JL, Blake JC, Chamberlain S et al (2000) Clinical, biochemical and molecular genetic correlations in Friedreich’s ataxia. Hum Mol Genet 9:275–282. https://doi.org/10.1093/HMG/9.2.275
doi: 10.1093/HMG/9.2.275 pubmed: 10607838
Heidari MM, Houshmand M, Hosseinkhani S et al (2009) Complex I and ATP content deficiency in lymphocytes from Friedreich’s ataxia. Can J Neurol Sci 36:26–31. https://doi.org/10.1017/S0317167100006260
doi: 10.1017/S0317167100006260 pubmed: 19294884
Napoli E, Taroni F, Cortopassi GA (2006) Frataxin, iron-sulfur clusters, heme, ROS, and aging. Antioxid Redox Signal 8:506–516. https://doi.org/10.1089/ARS.2006.8.506
doi: 10.1089/ARS.2006.8.506 pubmed: 16677095
Stepanova A, Magrané J (2020) Mitochondrial dysfunction in neurons in Friedreich’s ataxia. Mol Cell Neurosci 102:103419
doi: 10.1016/j.mcn.2019.103419 pubmed: 31770591
Martin AS, Abraham DM, Hershberger KA et al (2017) Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model. JCI Insight 2:e93885. https://doi.org/10.1172/jci.insight.93885
doi: 10.1172/jci.insight.93885 pubmed: 28724806 pmcid: 5518566
Wagner GR, Pride PM, Babbey CM, Payne RM (2012) Friedreich’s ataxia reveals a mechanism for coordinate regulation of oxidative metabolism via feedback inhibition of the SIRT3 deacetylase. Hum Mol Genet 21:2688–2697. https://doi.org/10.1093/hmg/dds095
doi: 10.1093/hmg/dds095 pubmed: 22394676 pmcid: 3363336
Janke C, Magiera MM (2020) The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol 21:307–326
doi: 10.1038/s41580-020-0214-3 pubmed: 32107477
Kim G-W, Li L, Ghorbani M et al (2013) Mice lacking α-tubulin acetyltransferase 1 are viable but display α-tubulin acetylation deficiency and dentate gyrus distortion. J Biol Chem 288:20334–20350. https://doi.org/10.1074/jbc.M113.464792
doi: 10.1074/jbc.M113.464792 pubmed: 23720746 pmcid: 3711300
Tong WH, Maio N, Zhang DL et al (2018) TLR-activated repression of Fe-S cluster biogenesis drives a metabolic shift and alters histone and tubulin acetylation. Blood Adv 2:1146–1156. https://doi.org/10.1182/BLOODADVANCES.2018015669
doi: 10.1182/BLOODADVANCES.2018015669 pubmed: 29784770 pmcid: 5965051
Chen Y, Zhang J, Lin Y et al (2011) Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 12:534–541. https://doi.org/10.1038/EMBOR.2011.65
doi: 10.1038/EMBOR.2011.65 pubmed: 21566644 pmcid: 3128277
Tamarit J, Britti E, Delaspre F et al (2021) Crosstalk between nucleus and mitochondria in human disease: Mitochondrial iron and calcium homeostasis in Friedreich ataxia. IUBMB Life. Blackwell Publishing Ltd, New York, pp 543–553
Llorens JV, Soriano S, Calap-Quintana P et al (2019) The role of iron in Friedreich’s Ataxia: insights from studies in human tissues and cellular and animal models. Front Neurosci. https://doi.org/10.3389/FNINS.2019.00075
doi: 10.3389/FNINS.2019.00075 pubmed: 30833885 pmcid: 6387962
Lin H, Magrane J, Rattelle A et al (2017) Early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in the KIKO mouse model of Friedreich ataxia. Dis Model Mech 10:1343–1352. https://doi.org/10.1242/DMM.030502
doi: 10.1242/DMM.030502 pubmed: 29125827 pmcid: 5719255
Vicente-Acosta A, Giménez-Cassina A, Díaz-Nido J, Loria F (2022) The smoothened agonist SAG reduces mitochondrial dysfunction and neurotoxicity of frataxin-deficient astrocytes. J Neuroinflammation. https://doi.org/10.1186/S12974-022-02442-W
doi: 10.1186/S12974-022-02442-W pubmed: 35413853 pmcid: 9006607
Chandran V, Gao K, Swarup V et al (2017) Inducible and reversible phenotypes in a novel mouse model of Friedreich’s ataxia. Elife. https://doi.org/10.7554/ELIFE.30054
doi: 10.7554/ELIFE.30054 pubmed: 29257745 pmcid: 5736353
Murugasamy K, Munjal A, Sundaresan NR (2022) Emerging roles of SIRT3 in cardiac metabolism. Front Cardiovasc Med. https://doi.org/10.3389/FCVM.2022.850340/FULL
doi: 10.3389/FCVM.2022.850340/FULL pubmed: 35369299 pmcid: 8971545
Sidorova-Darmos E, Sommer R, Eubanks JH (2018) The role of SIRT3 in the brain under physiological and pathological conditions. Front Cell Neurosci. https://doi.org/10.3389/fncel.2018.00196
doi: 10.3389/fncel.2018.00196 pubmed: 30090057 pmcid: 6068278
Sorolla MA, Nierga C, José Rodríguez-Colman M et al (2011) Sir2 is induced by oxidative stress in a yeast model of Huntington disease and its activation reduces protein aggregation. Arch Biochem Biophys 510:27–34. https://doi.org/10.1016/j.abb.2011.04.002
doi: 10.1016/j.abb.2011.04.002 pubmed: 21513696
Sundaresan NR, Samant SA, Pillai VB et al (2008) SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 28:6384–6401. https://doi.org/10.1128/MCB.00426-08
doi: 10.1128/MCB.00426-08 pubmed: 18710944 pmcid: 2577434
Satterstrom FK, Swindell WR, Laurent G et al (2015) Nuclear respiratory factor 2 induces SIRT3 expression. Aging Cell 14:818–825. https://doi.org/10.1111/ACEL.12360
doi: 10.1111/ACEL.12360 pubmed: 26109058 pmcid: 4568969
Fritz KS, Galligan JJ, Smathers RL et al (2011) 4-Hydroxynonenal inhibits SIRT3 via thiol-specific modification. Chem Res Toxicol 24:651–662. https://doi.org/10.1021/tx100355a
doi: 10.1021/tx100355a pubmed: 21449565 pmcid: 3113719
Muñoz-Lasso DC, Mollá B, Sáenz-Gamboa JJ et al (2022) Frataxin deficit leads to reduced dynamics of growth cones in dorsal root ganglia neurons of friedreich’s ataxia yg8sr model: a multilinear algebra approach. Front Mol Neurosci. https://doi.org/10.3389/FNMOL.2022.912780
doi: 10.3389/FNMOL.2022.912780 pubmed: 35769335 pmcid: 9236133
Eddé B, Rossier J, le Caer J et al (1991) A combination of posttranslational modifications is responsible for the production of neuronal alpha-tubulin heterogeneity. J Cell Biochem 46:134–142. https://doi.org/10.1002/JCB.240460207
doi: 10.1002/JCB.240460207 pubmed: 1680872
Portran D, Schaedel L, Xu Z et al (2017) Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat Cell Boil. https://doi.org/10.1038/ncb3481
doi: 10.1038/ncb3481
Tseng JH, Xie L, Song S et al (2017) The deacetylase HDAC6 mediates endogenous neuritic Tau pathology. Cell Rep 20:2169–2183. https://doi.org/10.1016/J.CELREP.2017.07.082
doi: 10.1016/J.CELREP.2017.07.082 pubmed: 28854366 pmcid: 5578720
Pandey UB, Nie Z, Batlevi Y et al (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863. https://doi.org/10.1038/NATURE05853
doi: 10.1038/NATURE05853 pubmed: 17568747
Waddell J, Banerjee A, Kristian T (2021) Acetylation in mitochondria dynamics and neurodegeneration. Cells. https://doi.org/10.3390/CELLS10113031
doi: 10.3390/CELLS10113031 pubmed: 34831252 pmcid: 8616140
Lu J, Cheng K, Zhang B et al (2015) Novel mechanisms for superoxide-scavenging activity of human manganese superoxide dismutase determined by the K68 key acetylation site. Free Radic Biol Med 85:114–126. https://doi.org/10.1016/J.FREERADBIOMED.2015.04.011
doi: 10.1016/J.FREERADBIOMED.2015.04.011 pubmed: 25908444
Andreassen OA, Ferrante RJ, Dedeoglu A et al (2001) Mice with a partial deficiency of manganese superoxide dismutase show increased vulnerability to the mitochondrial toxins malonate, 3-nitropropionic acid, and MPTP. Exp Neurol 167:189–195. https://doi.org/10.1006/EXNR.2000.7525
doi: 10.1006/EXNR.2000.7525 pubmed: 11161607
Keller JN, Kindy MS, Holtsberg FW et al (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18:687–697. https://doi.org/10.1523/JNEUROSCI.18-02-00687.1998
doi: 10.1523/JNEUROSCI.18-02-00687.1998 pubmed: 9425011 pmcid: 6792529
Melov S, Coskun P, Patel M et al (1999) Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci U S A 96:846–851. https://doi.org/10.1073/PNAS.96.3.846
doi: 10.1073/PNAS.96.3.846 pubmed: 9927656 pmcid: 15313
Cheng A, Yang Y, Zhou Y et al (2016) Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges. Cell Metab 23:128–142. https://doi.org/10.1016/J.CMET.2015.10.013
doi: 10.1016/J.CMET.2015.10.013 pubmed: 26698917
Pillai VB, Samant S, Sundaresan NR et al (2015) Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nature Commun. https://doi.org/10.1038/ncomms7656
doi: 10.1038/ncomms7656
Upadhyay A, Guan X, Munshi S, Chakrabarti R (2020) Nonallosteric sirtuin enzyme activation: characterization of hit compounds. BioRxiv. https://doi.org/10.1101/2020.04.17.045187
doi: 10.1101/2020.04.17.045187 pubmed: 32995780 pmcid: 7523106
Ye JS, Chen L, Lu YY et al (2019) SIRT3 activator honokiol ameliorates surgery/anesthesia-induced cognitive decline in mice through anti-oxidative stress and anti-inflammatory in hippocampus. CNS Neurosci Ther 25:355–366. https://doi.org/10.1111/cns.13053
doi: 10.1111/cns.13053 pubmed: 30296006
Wang D, Cao L, Zhou X et al (2022) Mitigation of honokiol on fluoride-induced mitochondrial oxidative stress, mitochondrial dysfunction, and cognitive deficits through activating AMPK/PGC-1α/Sirt3. J Hazard Mater. https://doi.org/10.1016/J.JHAZMAT.2022.129381
doi: 10.1016/J.JHAZMAT.2022.129381 pubmed: 37056027 pmcid: 9796360
Li H, Jia J, Wang W et al (2018) Honokiol alleviates cognitive deficits of Alzheimer’s disease (PS1V97L) transgenic mice by activating mitochondrial SIRT3. J Alzheimers Dis 64:291–302. https://doi.org/10.3233/JAD-180126
doi: 10.3233/JAD-180126 pubmed: 29865070
Alsina D, Ros J, Tamarit J (2018) Nitric oxide prevents Aft1 activation and metabolic remodeling in frataxin-deficient yeast. Redox Biol 14:131–141. https://doi.org/10.1016/J.REDOX.2017.09.001
doi: 10.1016/J.REDOX.2017.09.001 pubmed: 28918000
Alves R, Pazos-Gil M, Medina-Carbonero M et al (2022) Evolution of an iron-detoxifying protein: eukaryotic and Rickettsia frataxins contain a conserved site which is not present in their bacterial homologues. Int J Mol Sci 23:13151. https://doi.org/10.3390/IJMS232113151
doi: 10.3390/IJMS232113151 pubmed: 36361939 pmcid: 9658677
Miranda CJ, Santos MM, Ohshima K et al (2002) Frataxin knockin mouse. FEBS Lett 512:291–297. https://doi.org/10.1016/S0014-5793(02)02251-2
doi: 10.1016/S0014-5793(02)02251-2 pubmed: 11852098
Gérard C, Archambault AF, Bouchard C, Tremblay JP (2023) A promising mouse model for Friedreich Ataxia progressing like human patients. Behav Brain Res 436:114107. https://doi.org/10.1016/J.BBR.2022.114107
doi: 10.1016/J.BBR.2022.114107 pubmed: 36089099
Kalef-Ezra E, Edzeamey FJ, Valle A et al (2023) A new FRDA mouse model [Fxn null:YG8s(GAA) > 800] with more than 800 GAA repeats. Front Neurosci. https://doi.org/10.3389/FNINS.2023.930422
doi: 10.3389/FNINS.2023.930422 pubmed: 36777637 pmcid: 9909538

Auteurs

Arabela Sanz-Alcázar (A)

Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain.

Elena Britti (E)

Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain.

Fabien Delaspre (F)

Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain.

Marta Medina-Carbonero (M)

Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain.

Maria Pazos-Gil (M)

Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain.

Jordi Tamarit (J)

Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain.

Joaquim Ros (J)

Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain.

Elisa Cabiscol (E)

Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, IRBLleida, Edifici Biomedicina I, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain. elisa.cabiscol@udl.cat.

Classifications MeSH