The impact of high-speed rail on SO


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
21 Dec 2023
Historique:
received: 03 05 2023
accepted: 12 12 2023
medline: 22 12 2023
pubmed: 22 12 2023
entrez: 21 12 2023
Statut: epublish

Résumé

SO

Identifiants

pubmed: 38129503
doi: 10.1038/s41598-023-49853-0
pii: 10.1038/s41598-023-49853-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22835

Subventions

Organisme : National Social Science Fund of China
ID : 23BJY039

Informations de copyright

© 2023. The Author(s).

Références

Wang, T. et al. Spatial and temporal changes in SO
doi: 10.5194/acp-18-18063-2018
Chen, Y., Ebenstein, A., Greenstone, M. & Li, H. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proc. Natl. Acad. Sci. 110(32), 12936–12941. https://doi.org/10.1073/pnas.1300018110 (2013).
doi: 10.1073/pnas.1300018110 pubmed: 23836630 pmcid: 3740827
Shi, W., Du, Y., Chang, C. H., Nguyen, S. & Wu, J. Spatial heterogeneity and economic driving factors of SO
doi: 10.1016/j.ecolind.2021.108001
Ling, Z. et al. OMI-measured increasing SO
doi: 10.5194/acp-17-9115-2017
Sinha, A. & Bhattacharya, J. Estimation of environmental Kuznets curve for SO
doi: 10.1016/j.ecolind.2016.09.018
Cheng, Z., Li, L. & Liu, J. The emissions reduction effect and technical progress effect of environmental regulation policy tools. J. Clean. Prod. 149, 191–205. https://doi.org/10.1016/j.jclepro.2017.02.105 (2017).
doi: 10.1016/j.jclepro.2017.02.105
Fosten, J., Morley, B. & Taylor, T. Dynamic misspecification in the environmental Kuznets curve: Evidence from CO
doi: 10.1016/j.ecolecon.2012.01.023
He, Z., Shi, X., Wang, X. & Xu, Y. Urbanisation and the geographic concentration of industrial SO
doi: 10.1177/0042098016669915
Soytas, U., Sari, R. & Ewing, B. T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 62(3–4), 482–489. https://doi.org/10.1016/j.ecolecon.2006.07.009 (2007).
doi: 10.1016/j.ecolecon.2006.07.009
Wang, Y., Han, R. & Kubota, J. Is there an environmental Kuznets curve for SO
doi: 10.1016/j.rser.2015.10.143
Yang, M., Ma, T. & Sun, C. Evaluating the impact of urban traffic investment on SO
doi: 10.1016/j.enpol.2017.10.039
Cao, J., Liu, X. C., Wang, Y. & Li, Q. Accessibility impacts of China’s high-speed rail network. J. Transp. Geogr. 28, 12–21. https://doi.org/10.1016/j.jtrangeo.2012.10.008 (2013).
doi: 10.1016/j.jtrangeo.2012.10.008
Vickerman, R. High-speed rail and regional development: The case of intermediate stations. J. Transport Geogr. 42, 157–165. https://doi.org/10.1016/j.jtrangeo.2014.06.008 (2015).
doi: 10.1016/j.jtrangeo.2014.06.008
Zhou, Z. & Zhang, A. High-speed rail and industrial developments: Evidence from house prices and city-level GDP in China. Transport. Res. Part A: Policy Pract. 149, 98–113. https://doi.org/10.1016/j.tra.2021.05.001 (2021).
doi: 10.1016/j.tra.2021.05.001
Åkerman, J. The role of high-speed rail in mitigating climate change—the Swedish case Europabanan from a life cycle perspective. Transp. Res. Part D: Transp. Environ. 16(3), 208–217. https://doi.org/10.1016/j.trd.2010.12.004 (2011).
doi: 10.1016/j.trd.2010.12.004
Yang, X., Lin, S., Li, Y. & He, M. Can high-speed rail reduce environmental pollution? Evidence from China. J. Clean. Prod. 239, 118135. https://doi.org/10.1016/j.jclepro.2019.118135 (2019).
doi: 10.1016/j.jclepro.2019.118135
Li, H. & Guo, H. Spatial spillovers of pollution via high-speed rail network in China. Transport Policy 111, 138–152. https://doi.org/10.1016/j.tranpol.2021.07.020 (2021).
doi: 10.1016/j.tranpol.2021.07.020
Li, Q., Dong, A. & Zhang, B. Impact of the opening of high-speed rail on environmental pollution in the Yangtze River Economic Belt: Promoting or inhibiting?. Int. J. Environ. Sci. Technol 19(11), 11145–11160. https://doi.org/10.1007/s13762-021-03860-8 (2022).
doi: 10.1007/s13762-021-03860-8
Lin, J., Li, H., Huang, W., Xu, W. & Cheng, S. A carbon footprint of high-speed railways in China: A case study of the beijing-Shanghai line. J. Ind. Ecol. 23(4), 869–878. https://doi.org/10.1111/jiec.12824 (2019).
doi: 10.1111/jiec.12824
Albalate, D. & Bel, G. The economics and politics of high-speed rail: Lessons from experiences abroad. Rowman and Littlefield Publishers (Lexington Books), Lanham, Ma. https://rowman.com/ISBN/9780739171233 (2012).
Shaw, S. L., Fang, Z., Lu, S. & Tao, R. Impacts of high speed rail on railroad network accessibility in China. J. Transport Geogr. 40, 112–122. https://doi.org/10.1016/j.jtrangeo.2014.03.010 (2014).
doi: 10.1016/j.jtrangeo.2014.03.010
Guirao, B., Campa, J. L. & Casado-Sanz, N. Labour mobility between cities and metropolitan integration: The role of high speed rail commuting in Spain. Cities 78, 140–154. https://doi.org/10.1016/j.cities.2018.02.008 (2018).
doi: 10.1016/j.cities.2018.02.008
Fan, X., Xu, Y., Nan, Y., Li, B. & Cai, H. Impacts of high-speed railway on the industrial pollution emissions in China: Evidence from multi-period difference-in-differences models. Kybernetes https://doi.org/10.1108/K-07-2019-0499 (2020).
doi: 10.1108/K-07-2019-0499
Gao, Y., Zheng, J. & Wang, X. Does high-speed rail reduce environmental pollution? Establishment-level evidence from China. Socio-Econ. Plan. Sci. 83, 101211. https://doi.org/10.1016/j.seps.2021.101211 (2022).
doi: 10.1016/j.seps.2021.101211
Liu, S., Zhang, Y. & Cai, J. Operation of high-speed rail and reduction of corporate pollution: Evidence from China. Environ. Sci. Pollut. Res. 30(2), 3562–3575. https://doi.org/10.1007/s11356-022-22403-3 (2023).
doi: 10.1007/s11356-022-22403-3
Spulber, D. F. Global competitive strategy (Cambridge University Press, 2007). https://EconPapers.repec.org/RePEc:cup:cbooks:9780521367981 .
Qin, Y. No county left behind?’The distributional impact of high-speed rail upgrades in China. J. Econ. Geogr. 17(3), 489–520. https://doi.org/10.1093/jeg/lbw013 (2017).
doi: 10.1093/jeg/lbw013
Zhao, X. & Yin, H. Industrial relocation and energy consumption: Evidence from China. Energy Policy 39(5), 2944–2956. https://doi.org/10.1016/j.enpol.2011.03.002 (2011).
doi: 10.1016/j.enpol.2011.03.002
Jia, R., Shao, S. & Yang, L. High-speed rail and CO
doi: 10.1016/j.eneco.2021.105271
Liu, Q., Li, H., Shang, W. L. & Wang, K. Spatio-temporal distribution of Chinese cities’ air quality and the impact of high-speed rail. Renew. Sustain. Energy Rev. 170, 112970. https://doi.org/10.1016/j.rser.2022.112970 (2022).
doi: 10.1016/j.rser.2022.112970
Ferman, B. Inference in difference-in-differences: How much should we trust in independent clusters?. J. Appl. Econometr. 38(3), 358–369. https://doi.org/10.1002/jae.2955 (2023).
doi: 10.1002/jae.2955
Wu, T., Lin, S., Wang, J. & Yan, N. High-speed rail and city’s carbon productivity in China: A spatial difference-in-differences approach. Environ. Sci. Pollut. Res. 30(19), 56284–56302. https://doi.org/10.1007/s11356-023-26297-7 (2023).
doi: 10.1007/s11356-023-26297-7
Sun, X., Yan, S., Liu, T. & Wu, J. High-speed rail development and urban environmental efficiency in China: A city-level examination. Transport. Res. Part D: Transport Env. 86, 102456. https://doi.org/10.1016/j.trd.2020.102456 (2020).
doi: 10.1016/j.trd.2020.102456
Wang, F. et al. How does high-speed rail construction affect air pollutant emissions? Evidence from the Yangtze River Delta Urban Agglomeration in China. J. Clean. Prod. 350, 131471. https://doi.org/10.1016/j.jclepro.2022.131471 (2022).
doi: 10.1016/j.jclepro.2022.131471
Yan, L., Tu, M., Chagas, A. L. & Tai, L. The impact of high-speed railway on labor spatial misallocation—Based on spatial difference-in-differences analysis. Transport. Res. Part A: Policy Practice 164, 82–97. https://doi.org/10.1016/j.tra.2022.07.017 (2022).
doi: 10.1016/j.tra.2022.07.017
Gibbons, S. & Machin, S. Valuing rail access using transport innovations. J. Urban Econ. 57(1), 148–169. https://doi.org/10.1016/j.jue.2004.10.002 (2005).
doi: 10.1016/j.jue.2004.10.002
Catalini, C., Fons-Rosen, C. & Gaule, P. Did cheaper flights change the direction of science? In CEPR Discussion Paper DP11252. https://ssrn.com/abstract=2774366 (2016).
Levinson, A. Technology, international trade, and pollution from US manufacturing. Am. Econ. Rev. 99(5), 2177–2192. https://doi.org/10.1257/aer.99.5.2177 (2009).
doi: 10.1257/aer.99.5.2177
Huang, Y. & Wang, Y. How does high-speed railway affect green innovation efficiency? A perspective of innovation factor mobility. J. Clean. Prod. 265, 121623. https://doi.org/10.1016/j.jclepro.2020.121623 (2020).
doi: 10.1016/j.jclepro.2020.121623
Li, Z. & Xu, H. High-speed railroads and economic geography: Evidence from Japan. J. Reg. Sci. 58(4), 705–727. https://doi.org/10.1111/jors.12384 (2018).
doi: 10.1111/jors.12384
Nie, L. & Zhang, Z. Is high-speed rail heading towards a low-carbon industry? Evidence from a quasi-natural experiment in China. Resourc. Energy Econ. 72, 101355. https://doi.org/10.1016/j.reseneeco.2023.101355 (2023).
doi: 10.1016/j.reseneeco.2023.101355
Zhao, M., Liu, X., Derudder, B., Zhong, Y. & Shen, W. Mapping producer services networks in mainland Chinese cities. Urban Stud. 52(16), 3018–3034. https://doi.org/10.1177/0042098014558541 (2015).
doi: 10.1177/0042098014558541
Dinda, S. Environmental Kuznets curve hypothesis: A survey. Ecol. Econ. 49(4), 431–455. https://doi.org/10.1016/j.ecolecon.2004.02.011 (2004).
doi: 10.1016/j.ecolecon.2004.02.011
Chen, Z., Xue, J., Rose, A. Z. & Haynes, K. E. The impact of high-speed rail investment on economic and environmental change in China: A dynamic CGE analysis. Transport. Res. Part A: Policy Pract. 92, 232–245. https://doi.org/10.1016/j.tra.2016.08.006 (2016).
doi: 10.1016/j.tra.2016.08.006
Ureña, J. M., Menerault, P. & Garmendia, M. The high-speed rail challenge for big intermediate cities: A national, regional and local perspective. Cities 26(5), 266–279. https://doi.org/10.1016/j.cities.2009.07.001 (2009).
doi: 10.1016/j.cities.2009.07.001
Huang, Y., Jiang, C., Wang, K., Xiao, Y. & Zhang, A. Public-private partnership in high-speed rail financing: Case of uncertain regional economic spillovers in China. Transport policy 106, 64–75. https://doi.org/10.1016/j.tranpol.2021.03.016 (2021).
doi: 10.1016/j.tranpol.2021.03.016
Banerjee, A., Duflo, E. & Qian, N. On the road: Access to transportation infrastructure and economic growth in China. J. Dev. Econ. 145, 102442. https://doi.org/10.1016/j.jdeveco.2020.102442 (2020).
doi: 10.1016/j.jdeveco.2020.102442
Huang, G., Zhang, J., Yu, J. & Shi, X. Impact of transportation infrastructure on industrial pollution in Chinese cities: A spatial econometric analysis. Energy Econ. 92, 104973. https://doi.org/10.1016/j.eneco.2020.104973 (2020).
doi: 10.1016/j.eneco.2020.104973
Givoni, M. Development and impact of the modern high-speed train: A review. Transport Rev. 26(5), 593–611. https://doi.org/10.1080/01441640600589319 (2006).
doi: 10.1080/01441640600589319
Lin, Y. Travel costs and urban specialization patterns: Evidence from China’s high speed railway system. J. Urban Econ. 98, 98–123. https://doi.org/10.1016/j.jue.2016.11.002 (2017).
doi: 10.1016/j.jue.2016.11.002
Zheng, S. & Kahn, M. E. China’s bullet trains facilitate market integration and mitigate the cost of megacity growth. Proc. Natl. Acad. Sci. 110(14), E1248–E1253. https://doi.org/10.1073/pnas.1209247110 (2013).
doi: 10.1073/pnas.1209247110 pubmed: 23509264 pmcid: 3619335
Garmendia, M., de Ureña, J. M., Ribalaygua, C., Leal, J. & Coronado, J. M. Urban residential development in isolated small cities that are partially integrated in metropolitan areas by high speed train. Eur. Urban Reg. Stud. 15(3), 249–264. https://doi.org/10.1177/0969776408090 (2008).
doi: 10.1177/0969776408090
Baldwin, R. E. & Okubo, T. Heterogeneous firms, agglomeration and economic geography: Spatial selection and sorting. J. Econ. Geogr. 6(3), 323–346. https://doi.org/10.1093/jeg/lbi020 (2005).
doi: 10.1093/jeg/lbi020
Shao, S., Chen, Y., Li, K. & Yang, L. Market segmentation and urban CO
doi: 10.1016/j.jenvman.2019.109324 pubmed: 31382191
Zhang, Y. J. & Da, Y. B. The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renew. Sustain. Energy Rev. 41, 1255–1266. https://doi.org/10.1016/j.rser.2014.09.021 (2015).
doi: 10.1016/j.rser.2014.09.021
Liu, X. & Zhang, X. Industrial agglomeration, technological innovation and carbon productivity: Evidence from China. Resourc. Conserv. Recycl. 166, 105330. https://doi.org/10.1016/j.resconrec.2020.105330 (2021).
doi: 10.1016/j.resconrec.2020.105330
Sun, H., Edziah, B. K., Kporsu, A. K., Sarkodie, S. A. & Taghizadeh-Hesary, F. Energy efficiency: The role of technological innovation and knowledge spillover. Technol. Forecast. Soc. Change 167, 120659. https://doi.org/10.1016/j.techfore.2021.120659 (2021).
doi: 10.1016/j.techfore.2021.120659
Wang, Y., Cao, G., Yan, Y. & Wang, J. Does high-speed rail stimulate cross-city technological innovation collaboration? Evidence from China. Transport. Policy 116, 119–131. https://doi.org/10.1016/j.tranpol.2021.11.024 (2022).
doi: 10.1016/j.tranpol.2021.11.024
Gu, R., Li, C., Li, D., Yang, Y. & Gu, S. The impact of rationalization and upgrading of industrial structure on carbon emissions in the Beijing-Tianjin-Hebei urban agglomeration. Int. J. Environ. Res. Public Health 19(13), 7997. https://doi.org/10.3390/ijerph19137997 (2022).
doi: 10.3390/ijerph19137997 pubmed: 35805656 pmcid: 9265910
Yang, J., Liu, C. & Liu, K. Land marketization and industrial restructuring in China. Land Use Policy 131, 106737. https://doi.org/10.1016/j.landusepol.2023.106737 (2023).
doi: 10.1016/j.landusepol.2023.106737
Zhao, L., Zhang, X. & Zhao, F. Evaluating the impact of high-speed rail on county-level air quality in China. Transport. Res. part D: Transport Env. 86, 102485. https://doi.org/10.1016/j.trd.2020.102485 (2020).
doi: 10.1016/j.trd.2020.102485
Jiao, J., Wang, J., Zhang, F., Jin, F. & Liu, W. Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China. Transport Policy 91, 1–15. https://doi.org/10.1016/j.tranpol.2020.03.001 (2020).
doi: 10.1016/j.tranpol.2020.03.001
Zheng, S., Zhang, X., Sun, W. & Wang, J. The effect of a new subway line on local air quality: A case study in Changsha. Transport. Res. part D: Transport Env. 68, 26–38. https://doi.org/10.1016/j.trd.2017.10.004 (2019).
doi: 10.1016/j.trd.2017.10.004
Huang, Y. & Xu, W. Spatial and temporal heterogeneity of the impact of high-speed railway on urban economy: Empirical study of Chinese cities. J. Transport Geogr. 91, 102972. https://doi.org/10.1016/j.jtrangeo.2021.102972 (2021).
doi: 10.1016/j.jtrangeo.2021.102972
Chagas, A. L., Azzoni, C. R. & Almeida, A. N. A spatial difference-in-differences analysis of the impact of sugarcane production on respiratory diseases. Reg. Sci. Urban Econ. 59, 24–36. https://doi.org/10.1016/j.regsciurbeco.2016.04.002 (2016).
doi: 10.1016/j.regsciurbeco.2016.04.002
Baker, A. C., Larcker, D. F. & Wang, C. C. How much should we trust staggered difference-in-differences estimates?. J. Financ. Econ. 144(2), 370–395. https://doi.org/10.1016/j.jfineco.2022.01.004 (2022).
doi: 10.1016/j.jfineco.2022.01.004
Callaway, B. & Sant’Anna, P. H. Difference-in-differences with multiple time periods. J. Econometr. 225(2), 200–230. https://doi.org/10.1016/j.jeconom.2020.12.001 (2021).
doi: 10.1016/j.jeconom.2020.12.001
De Chaisemartin, C. & d’Haultfoeuille, X. Two-way fixed effects estimators with heterogeneous treatment effects. Am. Econ. Rev. 110(9), 2964–2996. https://doi.org/10.1257/aer.20181169 (2020).
doi: 10.1257/aer.20181169
Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econometr. 225(2), 254–277. https://doi.org/10.1016/j.jeconom.2021.03.014 (2021).
doi: 10.1016/j.jeconom.2021.03.014
De Chaisemartin, C. & d’Haultfoeuille, X. Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: A survey. Econometr. J. 26(3), C1–C30. https://doi.org/10.1093/ectj/utac017 (2023).
doi: 10.1093/ectj/utac017
Faber, B. Trade integration, market size, and industrialization: Evidence from China’s National Trunk Highway System. Rev. Econ. Stud. 81(3), 1046–1070. https://doi.org/10.1093/restud/rdu010 (2014).
doi: 10.1093/restud/rdu010
Baum-Snow, N., Brandt, L., Henderson, J. V., Turner, M. A. & Zhang, Q. Roads, railroads, and decentralization of Chinese cities. Rev. Econ. Stat. 99(3), 435–448. https://doi.org/10.1162/REST_a_00660 (2017).
doi: 10.1162/REST_a_00660
Duranton, G. & Turner, M. A. Urban growth and transportation. Rev. Econ. Stud. 79(4), 1407–1440. https://doi.org/10.1093/restud/rds010 (2012).
doi: 10.1093/restud/rds010
Duflo, E. & Pande, R. Dams. Q. J. Econ. 122(2), 601–646. https://doi.org/10.1162/qjec.122.2.601 (2007).
doi: 10.1162/qjec.122.2.601
LeSage, J. P. & Pace, R. K. Spatial econometric models. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications (Springer, 2009). https://doi.org/10.1007/978-3-642-03647-7_18 .

Auteurs

Na Yan (N)

School of Economics and Management, Tongji University, Shanghai, 200092, China.

Youshuai Sun (Y)

Xianda College of Economics and Humanities, Shanghai International Studies University, Shanghai, 200083, China.

Shanlang Lin (S)

School of Economics and Management, Tongji University, Shanghai, 200092, China.

Jingxian Wang (J)

School of Economics and Management, Tongji University, Shanghai, 200092, China.

Tuolei Wu (T)

School of Economics and Management, Tongji University, Shanghai, 200092, China. joshua1856@163.com.

Classifications MeSH