The impact of high-speed rail on SO
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
21 Dec 2023
21 Dec 2023
Historique:
received:
03
05
2023
accepted:
12
12
2023
medline:
22
12
2023
pubmed:
22
12
2023
entrez:
21
12
2023
Statut:
epublish
Résumé
SO
Identifiants
pubmed: 38129503
doi: 10.1038/s41598-023-49853-0
pii: 10.1038/s41598-023-49853-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22835Subventions
Organisme : National Social Science Fund of China
ID : 23BJY039
Informations de copyright
© 2023. The Author(s).
Références
Wang, T. et al. Spatial and temporal changes in SO
doi: 10.5194/acp-18-18063-2018
Chen, Y., Ebenstein, A., Greenstone, M. & Li, H. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proc. Natl. Acad. Sci. 110(32), 12936–12941. https://doi.org/10.1073/pnas.1300018110 (2013).
doi: 10.1073/pnas.1300018110
pubmed: 23836630
pmcid: 3740827
Shi, W., Du, Y., Chang, C. H., Nguyen, S. & Wu, J. Spatial heterogeneity and economic driving factors of SO
doi: 10.1016/j.ecolind.2021.108001
Ling, Z. et al. OMI-measured increasing SO
doi: 10.5194/acp-17-9115-2017
Sinha, A. & Bhattacharya, J. Estimation of environmental Kuznets curve for SO
doi: 10.1016/j.ecolind.2016.09.018
Cheng, Z., Li, L. & Liu, J. The emissions reduction effect and technical progress effect of environmental regulation policy tools. J. Clean. Prod. 149, 191–205. https://doi.org/10.1016/j.jclepro.2017.02.105 (2017).
doi: 10.1016/j.jclepro.2017.02.105
Fosten, J., Morley, B. & Taylor, T. Dynamic misspecification in the environmental Kuznets curve: Evidence from CO
doi: 10.1016/j.ecolecon.2012.01.023
He, Z., Shi, X., Wang, X. & Xu, Y. Urbanisation and the geographic concentration of industrial SO
doi: 10.1177/0042098016669915
Soytas, U., Sari, R. & Ewing, B. T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 62(3–4), 482–489. https://doi.org/10.1016/j.ecolecon.2006.07.009 (2007).
doi: 10.1016/j.ecolecon.2006.07.009
Wang, Y., Han, R. & Kubota, J. Is there an environmental Kuznets curve for SO
doi: 10.1016/j.rser.2015.10.143
Yang, M., Ma, T. & Sun, C. Evaluating the impact of urban traffic investment on SO
doi: 10.1016/j.enpol.2017.10.039
Cao, J., Liu, X. C., Wang, Y. & Li, Q. Accessibility impacts of China’s high-speed rail network. J. Transp. Geogr. 28, 12–21. https://doi.org/10.1016/j.jtrangeo.2012.10.008 (2013).
doi: 10.1016/j.jtrangeo.2012.10.008
Vickerman, R. High-speed rail and regional development: The case of intermediate stations. J. Transport Geogr. 42, 157–165. https://doi.org/10.1016/j.jtrangeo.2014.06.008 (2015).
doi: 10.1016/j.jtrangeo.2014.06.008
Zhou, Z. & Zhang, A. High-speed rail and industrial developments: Evidence from house prices and city-level GDP in China. Transport. Res. Part A: Policy Pract. 149, 98–113. https://doi.org/10.1016/j.tra.2021.05.001 (2021).
doi: 10.1016/j.tra.2021.05.001
Åkerman, J. The role of high-speed rail in mitigating climate change—the Swedish case Europabanan from a life cycle perspective. Transp. Res. Part D: Transp. Environ. 16(3), 208–217. https://doi.org/10.1016/j.trd.2010.12.004 (2011).
doi: 10.1016/j.trd.2010.12.004
Yang, X., Lin, S., Li, Y. & He, M. Can high-speed rail reduce environmental pollution? Evidence from China. J. Clean. Prod. 239, 118135. https://doi.org/10.1016/j.jclepro.2019.118135 (2019).
doi: 10.1016/j.jclepro.2019.118135
Li, H. & Guo, H. Spatial spillovers of pollution via high-speed rail network in China. Transport Policy 111, 138–152. https://doi.org/10.1016/j.tranpol.2021.07.020 (2021).
doi: 10.1016/j.tranpol.2021.07.020
Li, Q., Dong, A. & Zhang, B. Impact of the opening of high-speed rail on environmental pollution in the Yangtze River Economic Belt: Promoting or inhibiting?. Int. J. Environ. Sci. Technol 19(11), 11145–11160. https://doi.org/10.1007/s13762-021-03860-8 (2022).
doi: 10.1007/s13762-021-03860-8
Lin, J., Li, H., Huang, W., Xu, W. & Cheng, S. A carbon footprint of high-speed railways in China: A case study of the beijing-Shanghai line. J. Ind. Ecol. 23(4), 869–878. https://doi.org/10.1111/jiec.12824 (2019).
doi: 10.1111/jiec.12824
Albalate, D. & Bel, G. The economics and politics of high-speed rail: Lessons from experiences abroad. Rowman and Littlefield Publishers (Lexington Books), Lanham, Ma. https://rowman.com/ISBN/9780739171233 (2012).
Shaw, S. L., Fang, Z., Lu, S. & Tao, R. Impacts of high speed rail on railroad network accessibility in China. J. Transport Geogr. 40, 112–122. https://doi.org/10.1016/j.jtrangeo.2014.03.010 (2014).
doi: 10.1016/j.jtrangeo.2014.03.010
Guirao, B., Campa, J. L. & Casado-Sanz, N. Labour mobility between cities and metropolitan integration: The role of high speed rail commuting in Spain. Cities 78, 140–154. https://doi.org/10.1016/j.cities.2018.02.008 (2018).
doi: 10.1016/j.cities.2018.02.008
Fan, X., Xu, Y., Nan, Y., Li, B. & Cai, H. Impacts of high-speed railway on the industrial pollution emissions in China: Evidence from multi-period difference-in-differences models. Kybernetes https://doi.org/10.1108/K-07-2019-0499 (2020).
doi: 10.1108/K-07-2019-0499
Gao, Y., Zheng, J. & Wang, X. Does high-speed rail reduce environmental pollution? Establishment-level evidence from China. Socio-Econ. Plan. Sci. 83, 101211. https://doi.org/10.1016/j.seps.2021.101211 (2022).
doi: 10.1016/j.seps.2021.101211
Liu, S., Zhang, Y. & Cai, J. Operation of high-speed rail and reduction of corporate pollution: Evidence from China. Environ. Sci. Pollut. Res. 30(2), 3562–3575. https://doi.org/10.1007/s11356-022-22403-3 (2023).
doi: 10.1007/s11356-022-22403-3
Spulber, D. F. Global competitive strategy (Cambridge University Press, 2007). https://EconPapers.repec.org/RePEc:cup:cbooks:9780521367981 .
Qin, Y. No county left behind?’The distributional impact of high-speed rail upgrades in China. J. Econ. Geogr. 17(3), 489–520. https://doi.org/10.1093/jeg/lbw013 (2017).
doi: 10.1093/jeg/lbw013
Zhao, X. & Yin, H. Industrial relocation and energy consumption: Evidence from China. Energy Policy 39(5), 2944–2956. https://doi.org/10.1016/j.enpol.2011.03.002 (2011).
doi: 10.1016/j.enpol.2011.03.002
Jia, R., Shao, S. & Yang, L. High-speed rail and CO
doi: 10.1016/j.eneco.2021.105271
Liu, Q., Li, H., Shang, W. L. & Wang, K. Spatio-temporal distribution of Chinese cities’ air quality and the impact of high-speed rail. Renew. Sustain. Energy Rev. 170, 112970. https://doi.org/10.1016/j.rser.2022.112970 (2022).
doi: 10.1016/j.rser.2022.112970
Ferman, B. Inference in difference-in-differences: How much should we trust in independent clusters?. J. Appl. Econometr. 38(3), 358–369. https://doi.org/10.1002/jae.2955 (2023).
doi: 10.1002/jae.2955
Wu, T., Lin, S., Wang, J. & Yan, N. High-speed rail and city’s carbon productivity in China: A spatial difference-in-differences approach. Environ. Sci. Pollut. Res. 30(19), 56284–56302. https://doi.org/10.1007/s11356-023-26297-7 (2023).
doi: 10.1007/s11356-023-26297-7
Sun, X., Yan, S., Liu, T. & Wu, J. High-speed rail development and urban environmental efficiency in China: A city-level examination. Transport. Res. Part D: Transport Env. 86, 102456. https://doi.org/10.1016/j.trd.2020.102456 (2020).
doi: 10.1016/j.trd.2020.102456
Wang, F. et al. How does high-speed rail construction affect air pollutant emissions? Evidence from the Yangtze River Delta Urban Agglomeration in China. J. Clean. Prod. 350, 131471. https://doi.org/10.1016/j.jclepro.2022.131471 (2022).
doi: 10.1016/j.jclepro.2022.131471
Yan, L., Tu, M., Chagas, A. L. & Tai, L. The impact of high-speed railway on labor spatial misallocation—Based on spatial difference-in-differences analysis. Transport. Res. Part A: Policy Practice 164, 82–97. https://doi.org/10.1016/j.tra.2022.07.017 (2022).
doi: 10.1016/j.tra.2022.07.017
Gibbons, S. & Machin, S. Valuing rail access using transport innovations. J. Urban Econ. 57(1), 148–169. https://doi.org/10.1016/j.jue.2004.10.002 (2005).
doi: 10.1016/j.jue.2004.10.002
Catalini, C., Fons-Rosen, C. & Gaule, P. Did cheaper flights change the direction of science? In CEPR Discussion Paper DP11252. https://ssrn.com/abstract=2774366 (2016).
Levinson, A. Technology, international trade, and pollution from US manufacturing. Am. Econ. Rev. 99(5), 2177–2192. https://doi.org/10.1257/aer.99.5.2177 (2009).
doi: 10.1257/aer.99.5.2177
Huang, Y. & Wang, Y. How does high-speed railway affect green innovation efficiency? A perspective of innovation factor mobility. J. Clean. Prod. 265, 121623. https://doi.org/10.1016/j.jclepro.2020.121623 (2020).
doi: 10.1016/j.jclepro.2020.121623
Li, Z. & Xu, H. High-speed railroads and economic geography: Evidence from Japan. J. Reg. Sci. 58(4), 705–727. https://doi.org/10.1111/jors.12384 (2018).
doi: 10.1111/jors.12384
Nie, L. & Zhang, Z. Is high-speed rail heading towards a low-carbon industry? Evidence from a quasi-natural experiment in China. Resourc. Energy Econ. 72, 101355. https://doi.org/10.1016/j.reseneeco.2023.101355 (2023).
doi: 10.1016/j.reseneeco.2023.101355
Zhao, M., Liu, X., Derudder, B., Zhong, Y. & Shen, W. Mapping producer services networks in mainland Chinese cities. Urban Stud. 52(16), 3018–3034. https://doi.org/10.1177/0042098014558541 (2015).
doi: 10.1177/0042098014558541
Dinda, S. Environmental Kuznets curve hypothesis: A survey. Ecol. Econ. 49(4), 431–455. https://doi.org/10.1016/j.ecolecon.2004.02.011 (2004).
doi: 10.1016/j.ecolecon.2004.02.011
Chen, Z., Xue, J., Rose, A. Z. & Haynes, K. E. The impact of high-speed rail investment on economic and environmental change in China: A dynamic CGE analysis. Transport. Res. Part A: Policy Pract. 92, 232–245. https://doi.org/10.1016/j.tra.2016.08.006 (2016).
doi: 10.1016/j.tra.2016.08.006
Ureña, J. M., Menerault, P. & Garmendia, M. The high-speed rail challenge for big intermediate cities: A national, regional and local perspective. Cities 26(5), 266–279. https://doi.org/10.1016/j.cities.2009.07.001 (2009).
doi: 10.1016/j.cities.2009.07.001
Huang, Y., Jiang, C., Wang, K., Xiao, Y. & Zhang, A. Public-private partnership in high-speed rail financing: Case of uncertain regional economic spillovers in China. Transport policy 106, 64–75. https://doi.org/10.1016/j.tranpol.2021.03.016 (2021).
doi: 10.1016/j.tranpol.2021.03.016
Banerjee, A., Duflo, E. & Qian, N. On the road: Access to transportation infrastructure and economic growth in China. J. Dev. Econ. 145, 102442. https://doi.org/10.1016/j.jdeveco.2020.102442 (2020).
doi: 10.1016/j.jdeveco.2020.102442
Huang, G., Zhang, J., Yu, J. & Shi, X. Impact of transportation infrastructure on industrial pollution in Chinese cities: A spatial econometric analysis. Energy Econ. 92, 104973. https://doi.org/10.1016/j.eneco.2020.104973 (2020).
doi: 10.1016/j.eneco.2020.104973
Givoni, M. Development and impact of the modern high-speed train: A review. Transport Rev. 26(5), 593–611. https://doi.org/10.1080/01441640600589319 (2006).
doi: 10.1080/01441640600589319
Lin, Y. Travel costs and urban specialization patterns: Evidence from China’s high speed railway system. J. Urban Econ. 98, 98–123. https://doi.org/10.1016/j.jue.2016.11.002 (2017).
doi: 10.1016/j.jue.2016.11.002
Zheng, S. & Kahn, M. E. China’s bullet trains facilitate market integration and mitigate the cost of megacity growth. Proc. Natl. Acad. Sci. 110(14), E1248–E1253. https://doi.org/10.1073/pnas.1209247110 (2013).
doi: 10.1073/pnas.1209247110
pubmed: 23509264
pmcid: 3619335
Garmendia, M., de Ureña, J. M., Ribalaygua, C., Leal, J. & Coronado, J. M. Urban residential development in isolated small cities that are partially integrated in metropolitan areas by high speed train. Eur. Urban Reg. Stud. 15(3), 249–264. https://doi.org/10.1177/0969776408090 (2008).
doi: 10.1177/0969776408090
Baldwin, R. E. & Okubo, T. Heterogeneous firms, agglomeration and economic geography: Spatial selection and sorting. J. Econ. Geogr. 6(3), 323–346. https://doi.org/10.1093/jeg/lbi020 (2005).
doi: 10.1093/jeg/lbi020
Shao, S., Chen, Y., Li, K. & Yang, L. Market segmentation and urban CO
doi: 10.1016/j.jenvman.2019.109324
pubmed: 31382191
Zhang, Y. J. & Da, Y. B. The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renew. Sustain. Energy Rev. 41, 1255–1266. https://doi.org/10.1016/j.rser.2014.09.021 (2015).
doi: 10.1016/j.rser.2014.09.021
Liu, X. & Zhang, X. Industrial agglomeration, technological innovation and carbon productivity: Evidence from China. Resourc. Conserv. Recycl. 166, 105330. https://doi.org/10.1016/j.resconrec.2020.105330 (2021).
doi: 10.1016/j.resconrec.2020.105330
Sun, H., Edziah, B. K., Kporsu, A. K., Sarkodie, S. A. & Taghizadeh-Hesary, F. Energy efficiency: The role of technological innovation and knowledge spillover. Technol. Forecast. Soc. Change 167, 120659. https://doi.org/10.1016/j.techfore.2021.120659 (2021).
doi: 10.1016/j.techfore.2021.120659
Wang, Y., Cao, G., Yan, Y. & Wang, J. Does high-speed rail stimulate cross-city technological innovation collaboration? Evidence from China. Transport. Policy 116, 119–131. https://doi.org/10.1016/j.tranpol.2021.11.024 (2022).
doi: 10.1016/j.tranpol.2021.11.024
Gu, R., Li, C., Li, D., Yang, Y. & Gu, S. The impact of rationalization and upgrading of industrial structure on carbon emissions in the Beijing-Tianjin-Hebei urban agglomeration. Int. J. Environ. Res. Public Health 19(13), 7997. https://doi.org/10.3390/ijerph19137997 (2022).
doi: 10.3390/ijerph19137997
pubmed: 35805656
pmcid: 9265910
Yang, J., Liu, C. & Liu, K. Land marketization and industrial restructuring in China. Land Use Policy 131, 106737. https://doi.org/10.1016/j.landusepol.2023.106737 (2023).
doi: 10.1016/j.landusepol.2023.106737
Zhao, L., Zhang, X. & Zhao, F. Evaluating the impact of high-speed rail on county-level air quality in China. Transport. Res. part D: Transport Env. 86, 102485. https://doi.org/10.1016/j.trd.2020.102485 (2020).
doi: 10.1016/j.trd.2020.102485
Jiao, J., Wang, J., Zhang, F., Jin, F. & Liu, W. Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China. Transport Policy 91, 1–15. https://doi.org/10.1016/j.tranpol.2020.03.001 (2020).
doi: 10.1016/j.tranpol.2020.03.001
Zheng, S., Zhang, X., Sun, W. & Wang, J. The effect of a new subway line on local air quality: A case study in Changsha. Transport. Res. part D: Transport Env. 68, 26–38. https://doi.org/10.1016/j.trd.2017.10.004 (2019).
doi: 10.1016/j.trd.2017.10.004
Huang, Y. & Xu, W. Spatial and temporal heterogeneity of the impact of high-speed railway on urban economy: Empirical study of Chinese cities. J. Transport Geogr. 91, 102972. https://doi.org/10.1016/j.jtrangeo.2021.102972 (2021).
doi: 10.1016/j.jtrangeo.2021.102972
Chagas, A. L., Azzoni, C. R. & Almeida, A. N. A spatial difference-in-differences analysis of the impact of sugarcane production on respiratory diseases. Reg. Sci. Urban Econ. 59, 24–36. https://doi.org/10.1016/j.regsciurbeco.2016.04.002 (2016).
doi: 10.1016/j.regsciurbeco.2016.04.002
Baker, A. C., Larcker, D. F. & Wang, C. C. How much should we trust staggered difference-in-differences estimates?. J. Financ. Econ. 144(2), 370–395. https://doi.org/10.1016/j.jfineco.2022.01.004 (2022).
doi: 10.1016/j.jfineco.2022.01.004
Callaway, B. & Sant’Anna, P. H. Difference-in-differences with multiple time periods. J. Econometr. 225(2), 200–230. https://doi.org/10.1016/j.jeconom.2020.12.001 (2021).
doi: 10.1016/j.jeconom.2020.12.001
De Chaisemartin, C. & d’Haultfoeuille, X. Two-way fixed effects estimators with heterogeneous treatment effects. Am. Econ. Rev. 110(9), 2964–2996. https://doi.org/10.1257/aer.20181169 (2020).
doi: 10.1257/aer.20181169
Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econometr. 225(2), 254–277. https://doi.org/10.1016/j.jeconom.2021.03.014 (2021).
doi: 10.1016/j.jeconom.2021.03.014
De Chaisemartin, C. & d’Haultfoeuille, X. Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: A survey. Econometr. J. 26(3), C1–C30. https://doi.org/10.1093/ectj/utac017 (2023).
doi: 10.1093/ectj/utac017
Faber, B. Trade integration, market size, and industrialization: Evidence from China’s National Trunk Highway System. Rev. Econ. Stud. 81(3), 1046–1070. https://doi.org/10.1093/restud/rdu010 (2014).
doi: 10.1093/restud/rdu010
Baum-Snow, N., Brandt, L., Henderson, J. V., Turner, M. A. & Zhang, Q. Roads, railroads, and decentralization of Chinese cities. Rev. Econ. Stat. 99(3), 435–448. https://doi.org/10.1162/REST_a_00660 (2017).
doi: 10.1162/REST_a_00660
Duranton, G. & Turner, M. A. Urban growth and transportation. Rev. Econ. Stud. 79(4), 1407–1440. https://doi.org/10.1093/restud/rds010 (2012).
doi: 10.1093/restud/rds010
Duflo, E. & Pande, R. Dams. Q. J. Econ. 122(2), 601–646. https://doi.org/10.1162/qjec.122.2.601 (2007).
doi: 10.1162/qjec.122.2.601
LeSage, J. P. & Pace, R. K. Spatial econometric models. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications (Springer, 2009). https://doi.org/10.1007/978-3-642-03647-7_18 .