Moderating effect of cardiorespiratory fitness on sickness absence in occupational groups with different physical workloads.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
21 Dec 2023
Historique:
received: 09 03 2023
accepted: 15 12 2023
medline: 22 12 2023
pubmed: 22 12 2023
entrez: 22 12 2023
Statut: epublish

Résumé

Sickness absence from work has a large adverse impact on both individuals and societies in Sweden and the costs for sickness absence were calculated to 64.6 billion Swedish kronor (approx. 5.6 billion in Euros) in 2020. Although high cardiorespiratory fitness may protect against potential adverse effects of high physical workload, research on the moderating effect of respiratory fitness in the relation between having an occupation with high physical workload and sickness absence is scarce. To study the moderating effect of cardiorespiratory fitness in the association between occupation and psychiatric, musculoskeletal, and cardiorespiratory diagnoses. Data was retrieved from the HPI Health Profile Institute database (1988-2020) and Included 77,366 participants (mean age 41.8 years, 52.5% women) from the Swedish workforce. The sample was chosen based on occupational groups with a generally low education level and differences in physical workload. Hurdle models were used to account for incident sickness absence and the rate of sickness absence days. There were differences in sickness absence between occupational groups for musculoskeletal and cardiorespiratory diagnoses, but not for psychiatric diagnoses. In general, the association between occupation and musculoskeletal and cardiorespiratory diagnoses was moderated by cardiorespiratory fitness in most occupational groups with higher physical workload, whereas no moderating effect was observed for psychiatric diagnoses. The study results encourage community and workplace interventions to both consider variation in physical workload and to maintain and/or improve cardiorespiratory fitness for a lower risk of sickness absence, especially in occupations with high physical workload.

Identifiants

pubmed: 38129646
doi: 10.1038/s41598-023-50154-9
pii: 10.1038/s41598-023-50154-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

22904

Subventions

Organisme : Forskningsrådet för Arbetsliv och Socialvetenskap
ID : 2021-01561
Organisme : Forskningsrådet för Arbetsliv och Socialvetenskap
ID : 2018-00384

Informations de copyright

© 2023. The Author(s).

Références

Jenny, W. Sjuknotan. https://www.skandia.se/globalassets/pdf/press-och-media/rapporter-och-debatt/sjuknotan-2021.pdf .
Latza, U., Pfahlberg, A. & Gefeller, O. Impact of repetitive manual materials handling and psychosocial work factors on the future prevalence of chronic low-back pain among construction workers. Scand. J. Work. Environ. Health 28, 314–323 (2002).
pubmed: 12432984 doi: 10.5271/sjweh.680
Clausen, T., Burr, H. & Borg, V. Do psychosocial job demands and job resources predict long-term sickness absence? An analysis of register-based outcomes using pooled data on 39,408 individuals in four occupational groups. Int. Arch. Occup. Environ. Health 87, 909–917 (2014).
pubmed: 24562968 doi: 10.1007/s00420-014-0936-7
Mänty, M. et al. Physical working conditions and subsequent sickness absence: a record linkage follow-up study among 19–39-year-old municipal employees. Int. Arch. Occup. Environ. Health 95, 489–497 (2022).
pubmed: 34687341 doi: 10.1007/s00420-021-01791-y
Stoetzer, U. et al. Organizational factors related to low levels of sickness absence in a representative set of Swedish companies. Work Read. Mass 47, 193–205 (2014).
Virtanen, M., Kivimäki, M., Elovainio, M., Virtanen, P. & Vahtera, J. Local economy and sickness absence: prospective cohort study. J. Epidemiol. Community Health 59, 973–978 (2005).
pubmed: 16234426 pmcid: 1732933 doi: 10.1136/jech.2005.036236
Antczak, E. & Miszczyńska, K. M. Causes of sickness absenteeism in Europe—Analysis from an intercountry and gender perspective. Int. J. Environ. Res. Public. Health 18, 11823 (2021).
pubmed: 34831580 pmcid: 8623318 doi: 10.3390/ijerph182211823
Virtanen, M. et al. Lifestyle factors and risk of sickness absence from work: A multicohort study. Lancet Public Health 3, e545–e554 (2018).
pubmed: 30409406 pmcid: 6220357 doi: 10.1016/S2468-2667(18)30201-9
Väisänen, D. et al. Lifestyle-associated health risk indicators across a wide range of occupational groups: A cross-sectional analysis in 72,855 workers. BMC Public Health 20, 1656 (2020).
pubmed: 33148214 pmcid: 7641800 doi: 10.1186/s12889-020-09755-6
Laaksonen, M., Piha, K., Rahkonen, O., Martikainen, P. & Lahelma, E. Explaining occupational class differences in sickness absence: results from middle-aged municipal employees. J. Epidemiol. Community Health 64, 802–807 (2010).
pubmed: 19778907 doi: 10.1136/jech.2009.093385
Prince, S. A. et al. The effect of leisure time physical activity and sedentary behaviour on the health of workers with different occupational physical activity demands: a systematic review. Int. J. Behav. Nutr. Phys. Act. 18, 100 (2021).
pubmed: 34284795 pmcid: 8290554 doi: 10.1186/s12966-021-01166-z
Coenen, P. et al. Do highly physically active workers die early? A systematic review with meta-analysis of data from 193,696 participants. Br. J. Sports Med. 52, 1320–1326 (2018).
pubmed: 29760168 doi: 10.1136/bjsports-2017-098540
Holtermann, A., Schnohr, P., Nordestgaard, B. G. & Marott, J. L. The physical activity paradox in cardiovascular disease and all-cause mortality: The contemporary copenhagen general population study with 104,046 adults. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehab087 (2021).
doi: 10.1093/eurheartj/ehab087 pubmed: 33831954 pmcid: 8046503
Gupta, N. et al. The physical activity paradox revisited: a prospective study on compositional accelerometer data and long-term sickness absence. Int. J. Behav. Nutr. Phys. Act. 17, 93 (2020).
pubmed: 32690043 pmcid: 7370435 doi: 10.1186/s12966-020-00988-7
Ketels, M., Belligh, T., De Bacquer, D. & Clays, E. The impact of leisure-time physical activity and occupational physical activity on sickness absence/ A prospective study among people with physically demanding jobs. Scand. J. Work. Environ. Health. https://doi.org/10.5271/sjweh.4120 (2023).
doi: 10.5271/sjweh.4120 pubmed: 37713180
Holtermann, A., Hansen, J. V., Burr, H., Søgaard, K. & Sjøgaard, G. The health paradox of occupational and leisure-time physical activity. Br. J. Sports Med. 46, 291–295 (2012).
pubmed: 21459873 doi: 10.1136/bjsm.2010.079582
Stevens, M. L., Crowley, P., Holtermann, A., Mortensen, O. S. & Korshøj, M. Cardiorespiratory fitness, occupational aerobic workload and age: Workplace measurements among blue-collar workers. Int. Arch. Occup. Environ. Health 94, 503–513 (2021).
pubmed: 33161441 doi: 10.1007/s00420-020-01596-5
Ross, R. et al. Importance of assessing cardiorespiratory fitness in clinical practice: A case for fitness as a clinical vital sign: A scientific statement from the American heart association. Circulation 134, e653–e699 (2016).
pubmed: 27881567 doi: 10.1161/CIR.0000000000000461
Holtermann, A. et al. Physical demands at work, physical fitness, and 30-year ischaemic heart disease and all-cause mortality in the Copenhagen Male Study. Scand. J. Work. Environ. Health 36, 357–365 (2010).
pubmed: 20352174 doi: 10.5271/sjweh.2913
Zeiher, J. et al. Correlates and determinants of cardiorespiratory fitness in adults: A systematic review. Sports Med. Open 5, 39 (2019).
pubmed: 31482208 pmcid: 6722171 doi: 10.1186/s40798-019-0211-2
Bouchard, C. et al. Aerobic performance in brothers, dizygotic and monozygotic twins. Med. Sci. Sports Exerc. 18, 639–646 (1986).
pubmed: 3784876 doi: 10.1249/00005768-198612000-00006
Kyröläinen, H. et al. Physical fitness, BMI and sickness absence in male military personnel. Occup. Med. 58, 251–256 (2008).
doi: 10.1093/occmed/kqn010
Drake, E., Ekblom, M. M., Ekblom, Ö., Kallings, L. V. & Blom, V. Cardiorespiratory fitness and device-measured sedentary Behaviour are associated with sickness absence in office workers. Int. J. Environ. Res. Public. Health 17, 628 (2020).
pubmed: 31963740 pmcid: 7014321 doi: 10.3390/ijerph17020628
Kristensen, P., Corbett, K., Mehlum, I. S. & Bjerkedal, T. Impact of aerobic fitness on musculoskeletal sickness absence 5–15 years later: A cohort study of 227,201 male Norwegian employees. Occup. Environ. Med. 69, 250–255 (2012).
pubmed: 22107796 doi: 10.1136/oemed-2011-100144
Tudor-Locke, C., Ainsworth, B. E., Washington, T. L. & Troiano, R. Assigning metabolic equivalent values to the 2002 census occupational classification system. J. Phys. Act. Health 8, 581–586 (2011).
pubmed: 21597131 doi: 10.1123/jpah.8.4.581
Lund, T., Labriola, M. & Villadsen, E. Who is at risk for long-term sickness absence? A prospective cohort study of Danish employees. Work 28, 225–230 (2007).
pubmed: 17429148
Framke, E. et al. Emotional demands at work and risk of long-term sickness absence in 1·5 million employees in Denmark: A prospective cohort study on effect modifiers. Lancet Public Health 6, e752–e759 (2021).
pubmed: 34563282 doi: 10.1016/S2468-2667(21)00185-7
Andersen, L. L., Fallentin, N., Thorsen, S. V. & Holtermann, A. Physical workload and risk of long-term sickness absence in the general working population and among blue-collar workers: prospective cohort study with register follow-up. Occup. Environ. Med. 73, 246–253 (2016).
pubmed: 26740688 doi: 10.1136/oemed-2015-103314
Sterud, T. Work-related mechanical risk factors for long-term sick leave: A prospective study of the general working population in Norway. Eur. J. Public Health 24, 111–116 (2014).
pubmed: 23748849 doi: 10.1093/eurpub/ckt072
Andersen, L. L., Pedersen, J., Sundstrup, E., Thorsen, S. V. & Rugulies, R. High physical work demands have worse consequences for older workers: Prospective study of long-term sickness absence among 69,117 employees. Occup. Environ. Med. 78, 829–834 (2021).
pubmed: 33972376 doi: 10.1136/oemed-2020-107281
Solmi, M. et al. Age at onset of mental disorders worldwide: Large-scale meta-analysis of 192 epidemiological studies. Mol. Psychiatry 27, 281–295 (2022).
pubmed: 34079068 doi: 10.1038/s41380-021-01161-7
Sandanger, I., Nygård, J. F., Brage, S. & Tellnes, G. Relation between health problems and sickness absence: gender and age differences: A comparison of low-back pain, psychiatric disorders, and injuries. Scand. J. Public Health 28, 244–252 (2000).
pubmed: 11228110
Björkenstam, E. et al. Sickness absence due to common mental disorders in young employees in Sweden: Are there differences in occupational class and employment sector?. Soc. Psychiatry Psychiatr. Epidemiol. 57, 1097–1106 (2022).
pubmed: 34386867 doi: 10.1007/s00127-021-02152-3
Lidwall, U., Bill, S., Palmer, E. & Olsson Bohlin, C. Mental disorder sick leave in Sweden: A population study. Work 59, 259–272 (2018).
pubmed: 29355123 doi: 10.3233/WOR-172672
Kolu, P. et al. Cardiorespiratory fitness is associated with sickness absence and work ability. Occup. Med. https://doi.org/10.1093/occmed/kqac070 (2022).
doi: 10.1093/occmed/kqac070
Punnett, L. Musculoskeletal disorders and occupational exposures: How should we judge the evidence concerning the causal association?. Scand. J. Public Health 42, 49–58 (2014).
pubmed: 24553854 doi: 10.1177/1403494813517324
Pekkala, J., Rahkonen, O., Pietiläinen, O., Lahelma, E. & Blomgren, J. Sickness absence due to different musculoskeletal diagnoses by occupational class: A register-based study among 1.2 million Finnish employees. Occup. Environ. Med. 75, 296–302 (2018).
pubmed: 29382694 doi: 10.1136/oemed-2017-104571
Feeney, A., North, F., Head, J., Canner, R. & Marmot, M. Socioeconomic and sex differentials in reason for sickness absence from the Whitehall II study. Occup. Environ. Med. 55, 91–98 (1998).
pubmed: 9614392 pmcid: 1757555 doi: 10.1136/oem.55.2.91
Pekkala, J., Blomgren, J., Pietiläinen, O., Lahelma, E. & Rahkonen, O. Occupational class differences in diagnostic-specific sickness absence: A register-based study in the Finnish population, 2005–2014. BMC Public Health 17, 670 (2017).
pubmed: 28830389 pmcid: 5568169 doi: 10.1186/s12889-017-4674-0
Prognostic factors in short‐term disability due to musculoskeletal disorders. https://doi.org/10.1002/art.23537 .
Nathell, L., Malmberg, P., Lundbäck, B. & Nygren, Å. Impact of occupation on respiratory disease. Scand. J. Work. Environ. Health 26, 382–389 (2000).
pubmed: 11103836 doi: 10.5271/sjweh.558
Nishida, C. & Yatera, K. The impact of ambient environmental and occupational pollution on respiratory diseases. Int. J. Environ. Res. Public. Health 19, 2788 (2022).
pubmed: 35270479 pmcid: 8910713 doi: 10.3390/ijerph19052788
Clays, E. et al. The combined relationship of occupational and leisure-time physical activity with all-cause mortality among men, accounting for physical fitness. Am. J. Epidemiol. 179, 559–566 (2014).
pubmed: 24305575 doi: 10.1093/aje/kwt294
Wu, H.-C. & Wang, M.-J.J. Relationship between maximum acceptable work time and physical workload. Ergonomics 45, 280–289 (2002).
pubmed: 12028725 doi: 10.1080/00140130210123499
Olsen, O. & Kristensen, T. S. Impact of work environment on cardiovascular diseases in Denmark. J. Epidemiol. Community Health 45, 4–9; discussion 9–10 (1991).
Kivimäki, M. & Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 15, 215–229 (2018).
pubmed: 29213140 doi: 10.1038/nrcardio.2017.189
Taouk, Y., Spittal, M. J., LaMontagne, A. D. & Milner, A. J. Psychosocial work stressors and risk of all-cause and coronary heart disease mortality: A systematic review and meta-analysis. Scand. J. Work. Environ. Health 46, 19–31 (2020).
pubmed: 31608963 doi: 10.5271/sjweh.3854
Ockene, I. S. & Miller, N. H. Cigarette smoking, cardiovascular disease, and stroke. Circulation 96, 3243–3247 (1997).
pubmed: 9386200 doi: 10.1161/01.CIR.96.9.3243
Kaila-Kangas, L. et al. Alcohol use and sickness absence due to all causes and mental- or musculoskeletal disorders: A nationally representative study. BMC Public Health 18, 152 (2018).
pubmed: 29343233 pmcid: 5773150 doi: 10.1186/s12889-018-5059-8
Standard för svensk yrkesklassificering (SSYK). Statistiska Centralbyrån http://www.scb.se/dokumentation/klassifikationer-och-standarder/standard-for-svensk-yrkesklassificering-ssyk/ .
ISCO - International Standard Classification of Occupations. https://www.ilo.org/public/english/bureau/stat/isco/ .
Arbetsmiljöundersökningen. Statistiska Centralbyrån https://www.scb.se/hitta-statistik/statistik-efter-amne/arbetsmarknad/arbetsmiljo/arbetsmiljoundersokningen/ .
Astrand, I. Aerobic work capacity in men and women with special reference to age. Acta Physiol. Scand Suppl. 49, 1–92 (1960).
pubmed: 13794892
Bjorkman, F., Ekblom-Bak, E., Ekblom, O. & Ekblom, B. Validity of the revised Ekblom Bak cycle ergometer test in adults. Eur. J. Appl. Physiol. 116, 1627–1638 (2016).
pubmed: 27311582 pmcid: 4983286 doi: 10.1007/s00421-016-3412-0
Hu, M.-C., Pavlicova, M. & Nunes, E. V. Zero-inflated and hurdle models of count data with extra zeros: Examples from an HIV-risk reduction intervention trial. Am. J. Drug Alcohol. Abuse 37, 367–375 (2011).
pubmed: 21854279 pmcid: 3238139 doi: 10.3109/00952990.2011.597280
Feng, C. X. A comparison of zero-inflated and hurdle models for modeling zero-inflated count data. J. Stat. Distrib. Appl. 8, 8 (2021).
pubmed: 34760432 pmcid: 8570364 doi: 10.1186/s40488-021-00121-4
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2022).
Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
doi: 10.21105/joss.01686
Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Softw. 27, 1–25 (2008).
doi: 10.18637/jss.v027.i08
Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).
doi: 10.21105/joss.00772

Auteurs

Daniel Väisänen (D)

Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, Stockholm, Sweden. daniel.vaisanen@gih.se.

Peter J Johansson (PJ)

Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden.
Occupational and Environmental Medicine, Uppsala University Hospital, Uppsala, Sweden.

Lena Kallings (L)

Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.

Erik Hemmingsson (E)

Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.

Gunnar Andersson (G)

Department of Research, HPI Health Profile Institute, Danderyd/Stockholm, Sweden.

Peter Wallin (P)

Department of Research, HPI Health Profile Institute, Danderyd/Stockholm, Sweden.

Sofia Paulsson (S)

Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden.
Department of Research, HPI Health Profile Institute, Danderyd/Stockholm, Sweden.

Teresia Nyman (T)

Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden.
Occupational and Environmental Medicine, Uppsala University Hospital, Uppsala, Sweden.

Andreas Stenling (A)

Department of Psychology, Umeå University, Umeå, Sweden.
Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway.

Magnus Svartengren (M)

Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden.
Occupational and Environmental Medicine, Uppsala University Hospital, Uppsala, Sweden.

Elin Ekblom-Bak (E)

Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.

Classifications MeSH