Efficient and reproducible generation of human induced pluripotent stem cell-derived expandable liver organoids for disease modeling.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
22 Dec 2023
22 Dec 2023
Historique:
received:
20
09
2023
accepted:
17
12
2023
medline:
22
12
2023
pubmed:
22
12
2023
entrez:
22
12
2023
Statut:
epublish
Résumé
Genetic liver disease modeling is difficult because it is challenging to access patient tissue samples and to develop practical and relevant model systems. Previously, we developed novel proliferative and functional liver organoids from pluripotent stem cells; however, the protocol requires improvement for standardization and reproducible mass production. Here, we improved the method such that it is suitable for scalable expansion and relatively homogenous production, resulting in an efficient and reproducible process. Moreover, three medium components critical for long-term expansion were defined. Detailed transcriptome analysis revealed that fibroblast growth factor signaling, the essential pathway for hepatocyte proliferation during liver regeneration, was mainly enriched in proliferative liver organoids. Short hairpin RNA-mediated knockdown of FGFR4 impaired the generation and proliferation of organoids. Finally, glycogen storage disease type Ia (GSD1a) patient-specific liver organoids were efficiently and reproducibly generated using the new protocol. They well maintained disease-specific phenotypes such as higher lipid and glycogen accumulation in the liver organoids and lactate secretion into the medium consistent with the main pathologic characteristics of patients with GSD1a. Therefore, our newly established liver organoid platform can provide scalable and practical personalized disease models and help to find new therapies for incurable liver diseases including genetic liver diseases.
Identifiants
pubmed: 38129682
doi: 10.1038/s41598-023-50250-w
pii: 10.1038/s41598-023-50250-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22935Subventions
Organisme : Korea Research Institute of Bioscience and Biotechnology
ID : KGM5362313
Organisme : Korea Research Institute of Bioscience and Biotechnology
ID : KGM4722331
Organisme : National Research Foundation of Korea
ID : NRF- 2022R1A2B5B02001644
Organisme : Ministry of Food and Drug Safety
ID : 22213MFDS386
Organisme : Ministry of Trade, Industry and Energy
ID : 20009774
Informations de copyright
© 2023. The Author(s).
Références
Chou, J. Y., Jun, H. S. & Mansfield, B. C. Glycogen storage disease type I and G6Pase-beta deficiency: etiology and therapy. Nat. Rev. Endocrinol. 6, 676–688. https://doi.org/10.1038/nrendo.2010.189 (2010).
doi: 10.1038/nrendo.2010.189
pubmed: 20975743
pmcid: 4178929
Chou, J. Y., Kim, G. Y. & Cho, J. H. Recent development and gene therapy for glycogen storage disease type Ia. Liver Res. 1, 174–180. https://doi.org/10.1016/j.livres.2017.12.001 (2017).
doi: 10.1016/j.livres.2017.12.001
pubmed: 29576889
pmcid: 5859325
Reddy, S. K. et al. Liver transplantation for glycogen storage disease type Ia. J. Hepatol. 51, 483–490. https://doi.org/10.1016/j.jhep.2009.05.026 (2009).
doi: 10.1016/j.jhep.2009.05.026
pubmed: 19596478
Jauze, L., Monteillet, L., Mithieux, G., Rajas, F. & Ronzitti, G. Challenges of gene therapy for the treatment of glycogen storage diseases Type I and Type III. Hum. Gene Ther. 30, 1263–1273. https://doi.org/10.1089/hum.2019.102 (2019).
doi: 10.1089/hum.2019.102
pubmed: 31319709
Godoy, P. et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch. Toxicol. 87, 1315–1530. https://doi.org/10.1007/s00204-013-1078-5 (2013).
doi: 10.1007/s00204-013-1078-5
pubmed: 23974980
pmcid: 3753504
Li, M. & Izpisua Belmonte, J. C. Organoids - preclinical models of human disease. N. Engl. J. Med. 380, 569–579. https://doi.org/10.1056/NEJMra1806175 (2019).
doi: 10.1056/NEJMra1806175
pubmed: 30726695
Thompson, W. L. & Takebe, T. Human liver model systems in a dish. Dev. Growth Differ 63, 47–58. https://doi.org/10.1111/dgd.12708 (2021).
doi: 10.1111/dgd.12708
pubmed: 33423319
pmcid: 7940568
Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312. https://doi.org/10.1016/j.cell.2014.11.050 (2015).
doi: 10.1016/j.cell.2014.11.050
pubmed: 25533785
pmcid: 4313365
Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484. https://doi.org/10.1038/nature12271 (2013).
doi: 10.1038/nature12271
pubmed: 23823721
McCauley, H. A. & Wells, J. M. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 144, 958–962. https://doi.org/10.1242/dev.140731 (2017).
doi: 10.1242/dev.140731
pubmed: 28292841
pmcid: 5358106
Mun, S. J. et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J. Hepatol. 71, 970–985. https://doi.org/10.1016/j.jhep.2019.06.030 (2019).
doi: 10.1016/j.jhep.2019.06.030
pubmed: 31299272
Mun, S. J. et al. Long-term expansion of functional human pluripotent stem cell-derived hepatic organoids. Int. J. Stem Cells 13, 279–286. https://doi.org/10.15283/ijsc20060 (2020).
doi: 10.15283/ijsc20060
pubmed: 32323516
pmcid: 7378903
Dong, J. et al. Interleukin-6 and mevastatin regulate plasminogen activator inhibitor-1 through CCAAT/enhancer-binding protein-delta. Arterioscler. Thromb. Vasc. Biol. 25, 1078–1084. https://doi.org/10.1161/01.Atv.0000159701.24372.49 (2005).
doi: 10.1161/01.Atv.0000159701.24372.49
pubmed: 15718495
Selzner, N. et al. ICAM-1 triggers liver regeneration through leukocyte recruitment and Kupffer cell-dependent release of TNF-alpha/IL-6 in mice. Gastroenterology 124, 692–700. https://doi.org/10.1053/gast.2003.50098 (2003).
doi: 10.1053/gast.2003.50098
pubmed: 12612908
Flodby, P. et al. Differential patterns of expression of three C/EBP isoforms, HNF-1, and HNF-4 after partial hepatectomy in rats. Exp. Cell Res. 208, 248–256. https://doi.org/10.1006/excr.1993.1244 (1993).
doi: 10.1006/excr.1993.1244
pubmed: 8359219
Stubbs, A. P. et al. Measurement of androgen receptor expression in adult liver, fetal liver, and Hep-G2 cells by the polymerase chain reaction. Gut 35, 683–686. https://doi.org/10.1136/gut.35.5.683 (1994).
doi: 10.1136/gut.35.5.683
pubmed: 8200566
pmcid: 1374757
Probst, I. & Unthan-Fechner, K. Activation of glycolysis by insulin with a sequential increase of the 6-phosphofructo-2-kinase activity, fructose-2,6-bisphosphate level and pyruvate kinase activity in cultured rat hepatocytes. Eur. J. Biochem. 153, 347–353. https://doi.org/10.1111/j.1432-1033.1985.tb09309.x (1985).
doi: 10.1111/j.1432-1033.1985.tb09309.x
pubmed: 3000776
Prichard, R. K. & Schofield, P. J. The glycolytic pathway in adult liver fluke, Fasciola hepatica. Compar. Biochem. Physiol. 24, 697–710. https://doi.org/10.1016/0010-406X(68)90783-4 (1968).
doi: 10.1016/0010-406X(68)90783-4
Krycer, J. R. & Brown, A. J. Cross-talk between the androgen receptor and the liver X receptor: implications for cholesterol homeostasis. J. Biol. Chem. 286, 20637–20647. https://doi.org/10.1074/jbc.M111.227082 (2011).
doi: 10.1074/jbc.M111.227082
pubmed: 21489984
pmcid: 3121513
Trapani, L., Segatto, M. & Pallottini, V. Regulation and deregulation of cholesterol homeostasis: The liver as a metabolic “power station”. World J. Hepatol. 4, 184–190. https://doi.org/10.4254/wjh.v4.i6.184 (2012).
doi: 10.4254/wjh.v4.i6.184
pubmed: 22761969
pmcid: 3388116
Padrissa-Altes, S. et al. Control of hepatocyte proliferation and survival by Fgf receptors is essential for liver regeneration in mice. Gut 64, 1444–1453. https://doi.org/10.1136/gutjnl-2014-307874 (2015).
doi: 10.1136/gutjnl-2014-307874
pubmed: 25416068
Kim, D. S. et al. A liver-specific gene expression panel predicts the differentiation status of in vitro hepatocyte models. Hepatology 66, 1662–1674. https://doi.org/10.1002/hep.29324 (2017).
doi: 10.1002/hep.29324
pubmed: 28640507
Lei, K. J. et al. Mutations in the glucose-6-phosphatase gene are associated with glycogen storage disease types 1a and 1aSP but not 1b and 1c. J. Clin. Invest. 95, 234–240. https://doi.org/10.1172/JCI117645 (1995).
doi: 10.1172/JCI117645
pubmed: 7814621
pmcid: 295414
Marsee, A. et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell 28, 816–832. https://doi.org/10.1016/j.stem.2021.04.005 (2021).
doi: 10.1016/j.stem.2021.04.005
pubmed: 33961769
Sampaziotis, F. et al. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat. Biotechnol. 33, 845–852. https://doi.org/10.1038/nbt.3275 (2015).
doi: 10.1038/nbt.3275
pubmed: 26167629
pmcid: 4768345
Kim, J. H., Mun, S. J., Kim, J. H., Son, M. J. & Kim, S. Y. Integrative analysis of single-cell RNA-seq and ATAC-seq reveals heterogeneity of induced pluripotent stem cell-derived hepatic organoids. iScience 26, 107675. https://doi.org/10.1016/j.isci.2023.107675 (2023).
doi: 10.1016/j.isci.2023.107675
pubmed: 37680467
pmcid: 10481365
Twaroski, K. et al. FGF2 mediates hepatic progenitor cell formation during human pluripotent stem cell differentiation by inducing the WNT antagonist NKD1. Genes Dev. 29, 2463–2474. https://doi.org/10.1101/gad.268961.115 (2015).
doi: 10.1101/gad.268961.115
pubmed: 26637527
pmcid: 4691950
Kinoshita, T. et al. Hepatic differentiation induced by oncostatin M attenuates fetal liver hematopoiesis. Proc. Natl. Acad. Sci. USA 96, 7265–7270. https://doi.org/10.1073/pnas.96.13.7265 (1999).
doi: 10.1073/pnas.96.13.7265
pubmed: 10377403
pmcid: 22074
Gordillo, M., Evans, T. & Gouon-Evans, V. Orchestrating liver development. Development 142, 2094–2108. https://doi.org/10.1242/dev.114215 (2015).
doi: 10.1242/dev.114215
pubmed: 26081571
pmcid: 4483763
Chen, X. & Zeng, F. Directed hepatic differentiation from embryonic stem cells. Protein Cell 2, 180–188. https://doi.org/10.1007/s13238-011-1023-4 (2011).
doi: 10.1007/s13238-011-1023-4
pubmed: 21468890
pmcid: 4875307
Abu Rmilah, A. A., Zhou, W. & Nyberg, S. L. Hormonal contribution to liver regeneration. Mayo Clin. Proc. Innov. Qual. Outcomes 4, 315–338. https://doi.org/10.1016/j.mayocpiqo.2020.02.001 (2020).
doi: 10.1016/j.mayocpiqo.2020.02.001
pubmed: 32542223
pmcid: 7283948
Takiguchi, M. The C/EBP family of transcription factors in the liver and other organs. Int. J. Exp. Pathol. 79, 369–391. https://doi.org/10.1046/j.1365-2613.1998.00082.x (1998).
doi: 10.1046/j.1365-2613.1998.00082.x
pubmed: 10319019
pmcid: 3220372
Prasajak, P. & Leeanansaksiri, W. Developing a new two-step protocol to generate functional hepatocytes from Wharton’s jelly-derived mesenchymal stem cells under hypoxic condition. Stem Cells Int 2013, 762196. https://doi.org/10.1155/2013/762196 (2013).
doi: 10.1155/2013/762196
pubmed: 23818908
pmcid: 3683497
Fearon, A. E. et al. Fibroblast growth factor receptor 3 in hepatocytes protects from toxin-induced liver injury and fibrosis. iScience 24, 103143. https://doi.org/10.1016/j.isci.2021.103143 (2021).
doi: 10.1016/j.isci.2021.103143
pubmed: 34646985
pmcid: 8497853
Hoffmann, K. et al. Markers of liver regeneration-the role of growth factors and cytokines: a systematic review. BMC Surg. 20, 31. https://doi.org/10.1186/s12893-019-0664-8 (2020).
doi: 10.1186/s12893-019-0664-8
pubmed: 32050952
pmcid: 7017496
Brooks, E. D. et al. Long-term complications of glycogen storage disease type Ia in the canine model treated with gene replacement therapy. J. Inherit. Metab. Dis. 41, 965–976. https://doi.org/10.1007/s10545-018-0223-y (2018).
doi: 10.1007/s10545-018-0223-y
pubmed: 30043186
pmcid: 6328337