Quantitative subcellular reconstruction reveals a lipid mediated inter-organelle biogenesis network.


Journal

Nature cell biology
ISSN: 1476-4679
Titre abrégé: Nat Cell Biol
Pays: England
ID NLM: 100890575

Informations de publication

Date de publication:
21 Dec 2023
Historique:
received: 24 02 2023
accepted: 18 10 2023
medline: 22 12 2023
pubmed: 22 12 2023
entrez: 22 12 2023
Statut: aheadofprint

Résumé

The structures and functions of organelles in cells depend on each other but have not been systematically explored. We established stable knockout cell lines of peroxisomal, Golgi and endoplasmic reticulum genes identified in a whole-genome CRISPR knockout screen for inducers of mitochondrial biogenesis stress, showing that defects in peroxisome, Golgi and endoplasmic reticulum metabolism disrupt mitochondrial structure and function. Our quantitative total-organelle profiling approach for focussed ion beam scanning electron microscopy revealed in unprecedented detail that specific organelle dysfunctions precipitate multi-organelle biogenesis defects, impair mitochondrial morphology and reduce respiration. Multi-omics profiling showed a unified proteome response and global shifts in lipid and glycoprotein homeostasis that are elicited when organelle biogenesis is compromised, and that the resulting mitochondrial dysfunction can be rescued with precursors for ether-glycerophospholipid metabolic pathways. This work defines metabolic and morphological interactions between organelles and how their perturbation can cause disease.

Identifiants

pubmed: 38129691
doi: 10.1038/s41556-023-01297-4
pii: 10.1038/s41556-023-01297-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Rackham, O. & Filipovska, A. Organization and expression of the mammalian mitochondrial genome. Nat. Rev. Genet. 23, 606–623 (2022).
pubmed: 35459860 doi: 10.1038/s41576-022-00480-x
Morré, D. J., Merritt, W. D. & Lembi, C. A. Connections between mitochondria and endoplasmic reticulum in rat liver and onion stem. Protoplasma 73, 43–49 (1971).
pubmed: 5112775 doi: 10.1007/BF01286410
Mattie, S., Krols, M. & McBride, H. M. The enigma of an interconnected mitochondrial reticulum: new insights into mitochondrial fusion. Curr. Opin. Cell Biol. 59, 159–166 (2019).
pubmed: 31252211 doi: 10.1016/j.ceb.2019.05.004
Murley, A. & Nunnari, J. The emerging network of mitochondria–organelle contacts. Mol. Cell 61, 648–653 (2016).
pubmed: 26942669 pmcid: 5554544 doi: 10.1016/j.molcel.2016.01.031
Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum–mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607–625 (2012).
pubmed: 22992592 pmcid: 5111635 doi: 10.1038/nrm3440
Schwarz, D. S. & Blower, M. D. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell. Mol. Life Sci. 73, 79–94 (2016).
pubmed: 26433683 doi: 10.1007/s00018-015-2052-6
Scharwey, M., Tatsuta, T. & Langer, T. Mitochondrial lipid transport at a glance. J. Cell Sci. 126, 5317–5323 (2013).
pubmed: 24190879
Tatsuta, T., Scharwey, M. & Langer, T. Mitochondrial lipid trafficking. Trends Cell Biol. 24, 44–52 (2014).
pubmed: 24001776 doi: 10.1016/j.tcb.2013.07.011
Dimitrov, L., Lam, S. K. & Schekman, R. The role of the endoplasmic reticulum in peroxisome biogenesis. Cold Spring Harb. Perspect. Biol. 5, a013243 (2013).
pubmed: 23637287 pmcid: 3632059 doi: 10.1101/cshperspect.a013243
Jan, C. H., Williams, C. C. & Weissman, J. S. Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346, 1257521 (2014).
pubmed: 25378630 pmcid: 4285348 doi: 10.1126/science.1257521
Sugiura, A., Mattie, S., Prudent, J. & McBride, H. M. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542, 251–254 (2017).
pubmed: 28146471 doi: 10.1038/nature21375
Fagone, P. & Jackowski, S. Membrane phospholipid synthesis and endoplasmic reticulum function. J. Lipid Res. 50, S311–S316 (2009).
pubmed: 18952570 pmcid: 2674712 doi: 10.1194/jlr.R800049-JLR200
Jiang, S. et al. TEFM regulates both transcription elongation and RNA processing in mitochondria. EMBO Rep. 20, e48101 (2019).
pubmed: 31036713 pmcid: 6549021 doi: 10.15252/embr.201948101
Kühl, I. et al. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. eLife 6, e30952 (2017).
pubmed: 29132502 pmcid: 5703644 doi: 10.7554/eLife.30952
Perks, K. L. et al. PTCD1 is required for 16S rRNA maturation complex stability and mitochondrial ribosome assembly. Cell Rep. 23, 127–142 (2018).
pubmed: 29617655 doi: 10.1016/j.celrep.2018.03.033
Rackham, O. et al. Hierarchical RNA processing is required for mitochondrial ribosome assembly. Cell Rep. 16, 1874–1890 (2016).
pubmed: 27498866 doi: 10.1016/j.celrep.2016.07.031
Rudler, D. L. et al. Fidelity of translation initiation is required for coordinated respiratory complex assembly. Sci. Adv. 5, eaay2118 (2019).
pubmed: 31903419 pmcid: 6924987 doi: 10.1126/sciadv.aay2118
Siira, S. J. et al. Concerted regulation of mitochondrial and nuclear non‐coding RNAs by a dual‐targeted RNase Z. EMBO Rep. 19, e46198 (2018).
pubmed: 30126926 pmcid: 6172459 doi: 10.15252/embr.201846198
Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).
pubmed: 24336571 doi: 10.1126/science.1247005
Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).
pubmed: 33174596 doi: 10.1093/nar/gkaa1011
Thul, P. J. & Lindskog, C. The human protein atlas: a spatial map of the human proteome. Protein Sci. 27, 233–244 (2018).
pubmed: 28940711 doi: 10.1002/pro.3307
Schlüter, A., Real-Chicharro, A., Gabaldón, T., Sánchez-Jiménez, F. & Pujol, A. PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome. Nucleic Acids Res. 38, D800–D805 (2010).
pubmed: 19892824 doi: 10.1093/nar/gkp935
Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).
pubmed: 25476604 pmcid: 4290824 doi: 10.1186/s13059-014-0554-4
Matsumoto, N., Tamura, S. & Fujiki, Y. The pathogenic peroxin Pex26p recruits the Pex1p–Pex6p AAA ATPase complexes to peroxisomes. Nat. Cell Biol. 5, 454–460 (2003).
pubmed: 12717447 doi: 10.1038/ncb982
Diao, A., Rahman, D., Pappin, D. J. C., Lucocq, J. & Lowe, M. The coiled-coil membrane protein golgin-84 is a novel rab effector required for Golgi ribbon formation. J. Cell Biol. 160, 201–212 (2003).
pubmed: 12538640 pmcid: 2172652 doi: 10.1083/jcb.200207045
Gaudet, P., Livstone, M. S., Lewis, S. E. & Thomas, P. D. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinform. 12, 449–462 (2011).
pubmed: 21873635 pmcid: 3178059 doi: 10.1093/bib/bbr042
Lang, S. et al. Different effects of Sec61α, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J. Cell Sci. 125, 1958–1969 (2012).
pubmed: 22375059 pmcid: 4074215
Geisbrecht, B. V., Collins, C. S., Reuber, B. E. & Gould, S. J. Disruption of a PEX1–PEX6 interaction is the most common cause of the neurologic disorders Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease. Proc. Natl Acad. Sci. USA 95, 8630–8635 (1998).
pubmed: 9671729 pmcid: 21127 doi: 10.1073/pnas.95.15.8630
Nguyen, T. N. et al. ATG4 family proteins drive phagophore growth independently of the LC3/GABARAP lipidation system. Mol. Cell 81, 2013–2030 (2021).
pubmed: 33773106 doi: 10.1016/j.molcel.2021.03.001
Heinrich, L. et al. Whole-cell organelle segmentation in volume electron microscopy. Nature 599, 141–146 (2021).
pubmed: 34616042 doi: 10.1038/s41586-021-03977-3
Parlakgül, G. et al. Regulation of liver subcellular architecture controls metabolic homeostasis. Nature 603, 736–742 (2022).
pubmed: 35264794 pmcid: 9014868 doi: 10.1038/s41586-022-04488-5
Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. Finding a ‘kneedle’ in a haystack: detecting knee points in system behavior. In 2011 31st International Conference on Distributed Computing Systems Workshops 166–171 (IEEE, 2011); https://doi.org/10.1109/ICDCSW.2011.20
Jing, J., Liu, G., Huang, Y. & Zhou, Y. A molecular toolbox for interrogation of membrane contact sites. J. Physiol. 598, 1725–1739 (2020).
pubmed: 31119749 doi: 10.1113/JP277761
Cieri, D. et al. SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition. Cell Death Differ. 25, 1131–1145 (2018).
pubmed: 29229997 doi: 10.1038/s41418-017-0033-z
Braschi, E. et al. Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr. Biol. 20, 1310–1315 (2010).
pubmed: 20619655 doi: 10.1016/j.cub.2010.05.066
Ferreira, N. et al. Stress signaling and cellular proliferation reverse the effects of mitochondrial mistranslation. EMBO J. 38, e102155 (2019).
pubmed: 31721250 pmcid: 6912024 doi: 10.15252/embj.2019102155
Richman, T. R. et al. Mitochondrial mistranslation modulated by metabolic stress causes cardiovascular disease and reduced lifespan. Aging Cell 20, e13408 (2021).
pubmed: 34096683 pmcid: 8282274 doi: 10.1111/acel.13408
Shum, E. Y. et al. The antagonistic gene paralogs Upf3a and Upf3b govern nonsense-mediated RNA decay. Cell 165, 382–395 (2016).
pubmed: 27040500 pmcid: 4826573 doi: 10.1016/j.cell.2016.02.046
Kooijman, E. E., Chupin, V., de Kruijff, B. & Burger, K. N. J. Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4, 162–174 (2003).
pubmed: 12656989 doi: 10.1034/j.1600-0854.2003.00086.x
Hayashi, H. & Oohashi, M. Incorporation of acetyl-CoA generated from peroxisomal β-oxidation into ethanolamine plasmalogen of rat liver. Biochim. Biophys. Acta 1254, 319–325 (1995).
pubmed: 7857972 doi: 10.1016/0005-2760(94)00194-4
Lodhi, I. J. & Semenkovich, C. F. Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab. 19, 380–392 (2014).
pubmed: 24508507 pmcid: 3951609 doi: 10.1016/j.cmet.2014.01.002
Jiménez-Rojo, N. & Riezman, H. On the road to unraveling the molecular functions of ether lipids. FEBS Lett. 593, 2378–2389 (2019).
pubmed: 31166014 doi: 10.1002/1873-3468.13465
Sano, R. et al. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca
pubmed: 19917257 pmcid: 2782904 doi: 10.1016/j.molcel.2009.10.021
Abrahams, J. L., Campbell, M. P. & Packer, N. H. Building a PGC-LC-MS N-glycan retention library and elution mapping resource. Glycoconj. J. 35, 15–29 (2018).
pubmed: 28905148 doi: 10.1007/s10719-017-9793-4
Balgoma, D. & Hedeland, M. Etherglycerophospholipids and ferroptosis: structure, regulation, and location. Trends Endocrinol. Metab. 32, 960–962 (2021).
pubmed: 34481732 doi: 10.1016/j.tem.2021.08.005
Dean, J. M. & Lodhi, I. J. Structural and functional roles of ether lipids. Protein Cell 9, 196–206 (2018).
pubmed: 28523433 doi: 10.1007/s13238-017-0423-5
Eiyama, A., Aaltonen, M. J., Nolte, H., Tatsuta, T. & Langer, T. Disturbed intramitochondrial phosphatidic acid transport impairs cellular stress signaling. J. Biol. Chem. 296, 100335 (2021).
pubmed: 33497623 pmcid: 7949116 doi: 10.1016/j.jbc.2021.100335
Paradies, G., Paradies, V., Ruggiero, F. M. & Petrosillo, G. Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells 8, 728 (2019).
pubmed: 31315173 pmcid: 6678812 doi: 10.3390/cells8070728
Vance, J. E. Phospholipid synthesis and transport in mammalian cells. Traffic 16, 1–18 (2015).
pubmed: 25243850 doi: 10.1111/tra.12230
MacVicar, T. et al. Lipid signalling drives proteolytic rewiring of mitochondria by YME1L. Nature 575, 361–365 (2019).
pubmed: 31695197 doi: 10.1038/s41586-019-1738-6
Rahim, R. S., Chen, M., Nourse, C. C., Meedeniya, A. C. B. & Crane, D. I. Mitochondrial changes and oxidative stress in a mouse model of Zellweger syndrome neuropathogenesis. Neuroscience 334, 201–213 (2016).
pubmed: 27514574 doi: 10.1016/j.neuroscience.2016.08.001
Nuebel, E. et al. The biochemical basis of mitochondrial dysfunction in Zellweger spectrum disorder. EMBO Rep. 22, e51991 (2021).
pubmed: 34351705 pmcid: 8490991 doi: 10.15252/embr.202051991
Vincent, A. E. et al. Quantitative 3D mapping of the human skeletal muscle mitochondrial network. Cell Rep. 26, 996–1009 (2019).
pubmed: 30655224 pmcid: 6513570 doi: 10.1016/j.celrep.2019.01.010
Neelamegham, S. et al. Updates to the Symbol Nomenclature for Glycans guidelines. Glycobiology 29, 620–624 (2019).
pubmed: 31184695 pmcid: 7335484 doi: 10.1093/glycob/cwz045
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
doi: 10.14806/ej.17.1.200
Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).
pubmed: 12808457 doi: 10.1038/ng1180
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517 pmcid: 1239896 doi: 10.1073/pnas.0506580102
Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 10, 48 (2009).
doi: 10.1186/1471-2105-10-48
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).
pubmed: 21789182 pmcid: 3138752 doi: 10.1371/journal.pone.0021800
Kuznetsova, I., Lugmayr, A., Siira, S. J., Rackham, O. & Filipovska, A. CirGO: an alternative circular way of visualising gene ontology terms. BMC Bioinform. 20, 84 (2019).
doi: 10.1186/s12859-019-2671-2
Davies, S. M. K. et al. Pentatricopeptide repeat domain protein 3 associates with the mitochondrial small ribosomal subunit and regulates translation. FEBS Lett. 583, 1853–1858 (2009).
pubmed: 19427859 doi: 10.1016/j.febslet.2009.04.048
Vallese, F. et al. An expanded palette of improved SPLICS reporters detects multiple organelle contacts in vitro and in vivo. Nat. Commun. 11, 6069 (2020).
pubmed: 33247103 pmcid: 7699637 doi: 10.1038/s41467-020-19892-6
Lee, R. G. et al. Cardiolipin is required for membrane docking of mitochondrial ribosomes and protein synthesis. J. Cell Sci. 133, jcs240374 (2020).
pubmed: 32576663 doi: 10.1242/jcs.240374
Rackham, O. et al. Pentatricopeptide repeat domain protein 1 lowers the levels of mitochondrial leucine tRNAs in cells. Nucleic Acids Res. 37, 5859–5867 (2009).
pubmed: 19651879 pmcid: 2761286 doi: 10.1093/nar/gkp627
Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016).
pubmed: 27412086 doi: 10.1093/bioinformatics/btw413
Lehmann, G. & Legland, D. Efficient N-dimensional surface estimation using Crofton formula and run-length encoding. Insight J. https://doi.org/10.54294/wdu86d (2012).
doi: 10.54294/wdu86d
Community, B. O. Blender—a 3D Modelling and Rendering Package (Blender Foundation, 2018).
Krueger, F., James, F., Ewels, P., Afyounian, E. & Schuster-Boeckler, B. FelixKrueger/TrimGalore: v0.6.7—DOI via Zenodo (2021); https://doi.org/10.5281/zenodo.5127899
Andrews, S. FASTQC. A Quality Control Tool for High Throughput Sequence Data (2010).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959 pmcid: 5600148 doi: 10.1038/nmeth.4197
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2015).
pubmed: 26925227 doi: 10.12688/f1000research.7563.1
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35, 2084–2092 (2019).
pubmed: 30395178 doi: 10.1093/bioinformatics/bty895
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).
pubmed: 19033363 doi: 10.1093/nar/gkn923
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
pubmed: 19131956 doi: 10.1038/nprot.2008.211
R: A Language and Environment for Statistical Computing (R Core Team, 2013).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Vries, A. D. & Ripley, B. Create Dendrograms and Tree Diagrams Using ‘ggplot2’. R package ggdendro version 0.1.22 (2020).
Bruderer, R. et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell Proteom. 14, 1400–1410 (2015).
doi: 10.1074/mcp.M114.044305
Kuznetsova, I., Lugmayr, A., Rackham, O. & Filipovska, A. OmicsVolcano: software for intuitive visualization and interactive exploration of high-throughput biological data. STAR Protoc. 2, 100279 (2021).
pubmed: 33532728 pmcid: 7821039 doi: 10.1016/j.xpro.2020.100279
Lydic, T. A., Busik, J. V. & Reid, G. E. A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids. J. Lipid Res. 55, 1797–1809 (2014).
pubmed: 24879804 pmcid: 4109773 doi: 10.1194/jlr.D050302
Hofferek, V., Su, H. & Reid, G. E. in Mass Spectrometry-Based Lipidomics: Methods and Protocols (ed. Hsu, F. -F.) 61–75 (Springer US, 2021); https://doi.org/10.1007/978-1-0716-1410-5_5
Fahy, E. et al. A comprehensive classification system for lipids. J. Lipid Res. 46, 839–862 (2005).
pubmed: 15722563 doi: 10.1194/jlr.E400004-JLR200
Fahy, E. et al. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50, S9–S14 (2009).
pubmed: 19098281 pmcid: 2674711 doi: 10.1194/jlr.R800095-JLR200
Rustam, Y. H. & Reid, G. E. Analytical challenges and recent advances in mass spectrometry based lipidomics. Anal. Chem. 90, 374–397 (2018).
pubmed: 29166560 doi: 10.1021/acs.analchem.7b04836
Jensen, P. H., Karlsson, N. G., Kolarich, D. & Packer, N. H. Structural analysis of N- and O-glycans released from glycoproteins. Nat. Protoc. 7, 1299–1310 (2012).
pubmed: 22678433 doi: 10.1038/nprot.2012.063
Moh, E. S. X. et al. Long-term intrathecal administration of morphine vs. baclofen: differences in CSF glycoconjugate profiles using multiglycomics. Glycobiology 32, 50–59 (2022).
pubmed: 34969075 doi: 10.1093/glycob/cwab098
Packer, N. H., Lawson, M. A., Jardine, D. R. & Redmond, J. W. A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj. J. 15, 737–747 (1998).
pubmed: 9870349 doi: 10.1023/A:1006983125913
Ashwood, C., Lin, C. -H., Thaysen-Andersen, M. & Packer, N. H. Discrimination of isomers of released N- and O-glycans using diagnostic product ions in negative ion PGC-LC-ESI-MS/MS. J. Am. Soc. Mass. Spectrom. 29, 1194–1209 (2018).
pubmed: 29603058 doi: 10.1007/s13361-018-1932-z
Sanchez, M. I. G. L. et al. RNA processing in human mitochondria. Cell Cycle 10, 2904–2916 (2011).
pubmed: 21857155 doi: 10.4161/cc.10.17.17060
Watanabe, Y., Aoki-Kinoshita, K. F., Ishihama, Y. & Okuda, S. GlycoPOST realizes FAIR principles for glycomics mass spectrometry data. Nucleic Acids Res. 49, D1523–D1528 (2021).
pubmed: 33174597 doi: 10.1093/nar/gkaa1012
Iudin, A. et al. EMPIAR: the Electron Microscopy Public Image Archive. Nucleic Acids Res. 51, D1503–D1511 (2023).
pubmed: 36440762 doi: 10.1093/nar/gkac1062

Auteurs

Richard G Lee (RG)

Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.
ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia.
Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia.
Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia.

Danielle L Rudler (DL)

Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.
ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia.
Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia.

Samuel A Raven (SA)

Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.
ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia.
Curtin Medical School, Curtin University, Bentley, Western Australia, Australia.
Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia.

Liuyu Peng (L)

School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia.

Anaëlle Chopin (A)

Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.
ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia.
Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia.
Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia.

Edward S X Moh (ESX)

ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia.
School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia.

Tim McCubbin (T)

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, Australia.
ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Queensland, Australia.

Stefan J Siira (SJ)

Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.
ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia.
Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia.
Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia.

Samuel V Fagan (SV)

Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.
ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia.
Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia.
Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia.

Nicholas J DeBono (NJ)

ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia.
School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia.

Maike Stentenbach (M)

Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.
ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia.
Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia.
Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia.

Jasmin Browne (J)

Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.
ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia.
Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia.
Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia.

Filip F Rackham (FF)

Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.

Ji Li (J)

Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia.

Kaylene J Simpson (KJ)

Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.
Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia.

Esteban Marcellin (E)

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, Australia.
ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Queensland, Australia.

Nicolle H Packer (NH)

ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia.
School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia.

Gavin E Reid (GE)

School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia.
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia.
Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.

Benjamin S Padman (BS)

Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia.
Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia.

Oliver Rackham (O)

Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.
ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia.
Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia.
Curtin Medical School, Curtin University, Bentley, Western Australia, Australia.
Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia.

Aleksandra Filipovska (A)

ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia. aleksandra.filipovska@uwa.edu.au.
Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia. aleksandra.filipovska@uwa.edu.au.

Classifications MeSH