Quantitative subcellular reconstruction reveals a lipid mediated inter-organelle biogenesis network.
Journal
Nature cell biology
ISSN: 1476-4679
Titre abrégé: Nat Cell Biol
Pays: England
ID NLM: 100890575
Informations de publication
Date de publication:
21 Dec 2023
21 Dec 2023
Historique:
received:
24
02
2023
accepted:
18
10
2023
medline:
22
12
2023
pubmed:
22
12
2023
entrez:
22
12
2023
Statut:
aheadofprint
Résumé
The structures and functions of organelles in cells depend on each other but have not been systematically explored. We established stable knockout cell lines of peroxisomal, Golgi and endoplasmic reticulum genes identified in a whole-genome CRISPR knockout screen for inducers of mitochondrial biogenesis stress, showing that defects in peroxisome, Golgi and endoplasmic reticulum metabolism disrupt mitochondrial structure and function. Our quantitative total-organelle profiling approach for focussed ion beam scanning electron microscopy revealed in unprecedented detail that specific organelle dysfunctions precipitate multi-organelle biogenesis defects, impair mitochondrial morphology and reduce respiration. Multi-omics profiling showed a unified proteome response and global shifts in lipid and glycoprotein homeostasis that are elicited when organelle biogenesis is compromised, and that the resulting mitochondrial dysfunction can be rescued with precursors for ether-glycerophospholipid metabolic pathways. This work defines metabolic and morphological interactions between organelles and how their perturbation can cause disease.
Identifiants
pubmed: 38129691
doi: 10.1038/s41556-023-01297-4
pii: 10.1038/s41556-023-01297-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Rackham, O. & Filipovska, A. Organization and expression of the mammalian mitochondrial genome. Nat. Rev. Genet. 23, 606–623 (2022).
pubmed: 35459860
doi: 10.1038/s41576-022-00480-x
Morré, D. J., Merritt, W. D. & Lembi, C. A. Connections between mitochondria and endoplasmic reticulum in rat liver and onion stem. Protoplasma 73, 43–49 (1971).
pubmed: 5112775
doi: 10.1007/BF01286410
Mattie, S., Krols, M. & McBride, H. M. The enigma of an interconnected mitochondrial reticulum: new insights into mitochondrial fusion. Curr. Opin. Cell Biol. 59, 159–166 (2019).
pubmed: 31252211
doi: 10.1016/j.ceb.2019.05.004
Murley, A. & Nunnari, J. The emerging network of mitochondria–organelle contacts. Mol. Cell 61, 648–653 (2016).
pubmed: 26942669
pmcid: 5554544
doi: 10.1016/j.molcel.2016.01.031
Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum–mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607–625 (2012).
pubmed: 22992592
pmcid: 5111635
doi: 10.1038/nrm3440
Schwarz, D. S. & Blower, M. D. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell. Mol. Life Sci. 73, 79–94 (2016).
pubmed: 26433683
doi: 10.1007/s00018-015-2052-6
Scharwey, M., Tatsuta, T. & Langer, T. Mitochondrial lipid transport at a glance. J. Cell Sci. 126, 5317–5323 (2013).
pubmed: 24190879
Tatsuta, T., Scharwey, M. & Langer, T. Mitochondrial lipid trafficking. Trends Cell Biol. 24, 44–52 (2014).
pubmed: 24001776
doi: 10.1016/j.tcb.2013.07.011
Dimitrov, L., Lam, S. K. & Schekman, R. The role of the endoplasmic reticulum in peroxisome biogenesis. Cold Spring Harb. Perspect. Biol. 5, a013243 (2013).
pubmed: 23637287
pmcid: 3632059
doi: 10.1101/cshperspect.a013243
Jan, C. H., Williams, C. C. & Weissman, J. S. Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346, 1257521 (2014).
pubmed: 25378630
pmcid: 4285348
doi: 10.1126/science.1257521
Sugiura, A., Mattie, S., Prudent, J. & McBride, H. M. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542, 251–254 (2017).
pubmed: 28146471
doi: 10.1038/nature21375
Fagone, P. & Jackowski, S. Membrane phospholipid synthesis and endoplasmic reticulum function. J. Lipid Res. 50, S311–S316 (2009).
pubmed: 18952570
pmcid: 2674712
doi: 10.1194/jlr.R800049-JLR200
Jiang, S. et al. TEFM regulates both transcription elongation and RNA processing in mitochondria. EMBO Rep. 20, e48101 (2019).
pubmed: 31036713
pmcid: 6549021
doi: 10.15252/embr.201948101
Kühl, I. et al. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. eLife 6, e30952 (2017).
pubmed: 29132502
pmcid: 5703644
doi: 10.7554/eLife.30952
Perks, K. L. et al. PTCD1 is required for 16S rRNA maturation complex stability and mitochondrial ribosome assembly. Cell Rep. 23, 127–142 (2018).
pubmed: 29617655
doi: 10.1016/j.celrep.2018.03.033
Rackham, O. et al. Hierarchical RNA processing is required for mitochondrial ribosome assembly. Cell Rep. 16, 1874–1890 (2016).
pubmed: 27498866
doi: 10.1016/j.celrep.2016.07.031
Rudler, D. L. et al. Fidelity of translation initiation is required for coordinated respiratory complex assembly. Sci. Adv. 5, eaay2118 (2019).
pubmed: 31903419
pmcid: 6924987
doi: 10.1126/sciadv.aay2118
Siira, S. J. et al. Concerted regulation of mitochondrial and nuclear non‐coding RNAs by a dual‐targeted RNase Z. EMBO Rep. 19, e46198 (2018).
pubmed: 30126926
pmcid: 6172459
doi: 10.15252/embr.201846198
Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).
pubmed: 24336571
doi: 10.1126/science.1247005
Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).
pubmed: 33174596
doi: 10.1093/nar/gkaa1011
Thul, P. J. & Lindskog, C. The human protein atlas: a spatial map of the human proteome. Protein Sci. 27, 233–244 (2018).
pubmed: 28940711
doi: 10.1002/pro.3307
Schlüter, A., Real-Chicharro, A., Gabaldón, T., Sánchez-Jiménez, F. & Pujol, A. PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome. Nucleic Acids Res. 38, D800–D805 (2010).
pubmed: 19892824
doi: 10.1093/nar/gkp935
Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).
pubmed: 25476604
pmcid: 4290824
doi: 10.1186/s13059-014-0554-4
Matsumoto, N., Tamura, S. & Fujiki, Y. The pathogenic peroxin Pex26p recruits the Pex1p–Pex6p AAA ATPase complexes to peroxisomes. Nat. Cell Biol. 5, 454–460 (2003).
pubmed: 12717447
doi: 10.1038/ncb982
Diao, A., Rahman, D., Pappin, D. J. C., Lucocq, J. & Lowe, M. The coiled-coil membrane protein golgin-84 is a novel rab effector required for Golgi ribbon formation. J. Cell Biol. 160, 201–212 (2003).
pubmed: 12538640
pmcid: 2172652
doi: 10.1083/jcb.200207045
Gaudet, P., Livstone, M. S., Lewis, S. E. & Thomas, P. D. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief. Bioinform. 12, 449–462 (2011).
pubmed: 21873635
pmcid: 3178059
doi: 10.1093/bib/bbr042
Lang, S. et al. Different effects of Sec61α, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J. Cell Sci. 125, 1958–1969 (2012).
pubmed: 22375059
pmcid: 4074215
Geisbrecht, B. V., Collins, C. S., Reuber, B. E. & Gould, S. J. Disruption of a PEX1–PEX6 interaction is the most common cause of the neurologic disorders Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease. Proc. Natl Acad. Sci. USA 95, 8630–8635 (1998).
pubmed: 9671729
pmcid: 21127
doi: 10.1073/pnas.95.15.8630
Nguyen, T. N. et al. ATG4 family proteins drive phagophore growth independently of the LC3/GABARAP lipidation system. Mol. Cell 81, 2013–2030 (2021).
pubmed: 33773106
doi: 10.1016/j.molcel.2021.03.001
Heinrich, L. et al. Whole-cell organelle segmentation in volume electron microscopy. Nature 599, 141–146 (2021).
pubmed: 34616042
doi: 10.1038/s41586-021-03977-3
Parlakgül, G. et al. Regulation of liver subcellular architecture controls metabolic homeostasis. Nature 603, 736–742 (2022).
pubmed: 35264794
pmcid: 9014868
doi: 10.1038/s41586-022-04488-5
Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. Finding a ‘kneedle’ in a haystack: detecting knee points in system behavior. In 2011 31st International Conference on Distributed Computing Systems Workshops 166–171 (IEEE, 2011); https://doi.org/10.1109/ICDCSW.2011.20
Jing, J., Liu, G., Huang, Y. & Zhou, Y. A molecular toolbox for interrogation of membrane contact sites. J. Physiol. 598, 1725–1739 (2020).
pubmed: 31119749
doi: 10.1113/JP277761
Cieri, D. et al. SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition. Cell Death Differ. 25, 1131–1145 (2018).
pubmed: 29229997
doi: 10.1038/s41418-017-0033-z
Braschi, E. et al. Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr. Biol. 20, 1310–1315 (2010).
pubmed: 20619655
doi: 10.1016/j.cub.2010.05.066
Ferreira, N. et al. Stress signaling and cellular proliferation reverse the effects of mitochondrial mistranslation. EMBO J. 38, e102155 (2019).
pubmed: 31721250
pmcid: 6912024
doi: 10.15252/embj.2019102155
Richman, T. R. et al. Mitochondrial mistranslation modulated by metabolic stress causes cardiovascular disease and reduced lifespan. Aging Cell 20, e13408 (2021).
pubmed: 34096683
pmcid: 8282274
doi: 10.1111/acel.13408
Shum, E. Y. et al. The antagonistic gene paralogs Upf3a and Upf3b govern nonsense-mediated RNA decay. Cell 165, 382–395 (2016).
pubmed: 27040500
pmcid: 4826573
doi: 10.1016/j.cell.2016.02.046
Kooijman, E. E., Chupin, V., de Kruijff, B. & Burger, K. N. J. Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4, 162–174 (2003).
pubmed: 12656989
doi: 10.1034/j.1600-0854.2003.00086.x
Hayashi, H. & Oohashi, M. Incorporation of acetyl-CoA generated from peroxisomal β-oxidation into ethanolamine plasmalogen of rat liver. Biochim. Biophys. Acta 1254, 319–325 (1995).
pubmed: 7857972
doi: 10.1016/0005-2760(94)00194-4
Lodhi, I. J. & Semenkovich, C. F. Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab. 19, 380–392 (2014).
pubmed: 24508507
pmcid: 3951609
doi: 10.1016/j.cmet.2014.01.002
Jiménez-Rojo, N. & Riezman, H. On the road to unraveling the molecular functions of ether lipids. FEBS Lett. 593, 2378–2389 (2019).
pubmed: 31166014
doi: 10.1002/1873-3468.13465
Sano, R. et al. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca
pubmed: 19917257
pmcid: 2782904
doi: 10.1016/j.molcel.2009.10.021
Abrahams, J. L., Campbell, M. P. & Packer, N. H. Building a PGC-LC-MS N-glycan retention library and elution mapping resource. Glycoconj. J. 35, 15–29 (2018).
pubmed: 28905148
doi: 10.1007/s10719-017-9793-4
Balgoma, D. & Hedeland, M. Etherglycerophospholipids and ferroptosis: structure, regulation, and location. Trends Endocrinol. Metab. 32, 960–962 (2021).
pubmed: 34481732
doi: 10.1016/j.tem.2021.08.005
Dean, J. M. & Lodhi, I. J. Structural and functional roles of ether lipids. Protein Cell 9, 196–206 (2018).
pubmed: 28523433
doi: 10.1007/s13238-017-0423-5
Eiyama, A., Aaltonen, M. J., Nolte, H., Tatsuta, T. & Langer, T. Disturbed intramitochondrial phosphatidic acid transport impairs cellular stress signaling. J. Biol. Chem. 296, 100335 (2021).
pubmed: 33497623
pmcid: 7949116
doi: 10.1016/j.jbc.2021.100335
Paradies, G., Paradies, V., Ruggiero, F. M. & Petrosillo, G. Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells 8, 728 (2019).
pubmed: 31315173
pmcid: 6678812
doi: 10.3390/cells8070728
Vance, J. E. Phospholipid synthesis and transport in mammalian cells. Traffic 16, 1–18 (2015).
pubmed: 25243850
doi: 10.1111/tra.12230
MacVicar, T. et al. Lipid signalling drives proteolytic rewiring of mitochondria by YME1L. Nature 575, 361–365 (2019).
pubmed: 31695197
doi: 10.1038/s41586-019-1738-6
Rahim, R. S., Chen, M., Nourse, C. C., Meedeniya, A. C. B. & Crane, D. I. Mitochondrial changes and oxidative stress in a mouse model of Zellweger syndrome neuropathogenesis. Neuroscience 334, 201–213 (2016).
pubmed: 27514574
doi: 10.1016/j.neuroscience.2016.08.001
Nuebel, E. et al. The biochemical basis of mitochondrial dysfunction in Zellweger spectrum disorder. EMBO Rep. 22, e51991 (2021).
pubmed: 34351705
pmcid: 8490991
doi: 10.15252/embr.202051991
Vincent, A. E. et al. Quantitative 3D mapping of the human skeletal muscle mitochondrial network. Cell Rep. 26, 996–1009 (2019).
pubmed: 30655224
pmcid: 6513570
doi: 10.1016/j.celrep.2019.01.010
Neelamegham, S. et al. Updates to the Symbol Nomenclature for Glycans guidelines. Glycobiology 29, 620–624 (2019).
pubmed: 31184695
pmcid: 7335484
doi: 10.1093/glycob/cwz045
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
doi: 10.14806/ej.17.1.200
Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).
pubmed: 12808457
doi: 10.1038/ng1180
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 10, 48 (2009).
doi: 10.1186/1471-2105-10-48
Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).
pubmed: 21789182
pmcid: 3138752
doi: 10.1371/journal.pone.0021800
Kuznetsova, I., Lugmayr, A., Siira, S. J., Rackham, O. & Filipovska, A. CirGO: an alternative circular way of visualising gene ontology terms. BMC Bioinform. 20, 84 (2019).
doi: 10.1186/s12859-019-2671-2
Davies, S. M. K. et al. Pentatricopeptide repeat domain protein 3 associates with the mitochondrial small ribosomal subunit and regulates translation. FEBS Lett. 583, 1853–1858 (2009).
pubmed: 19427859
doi: 10.1016/j.febslet.2009.04.048
Vallese, F. et al. An expanded palette of improved SPLICS reporters detects multiple organelle contacts in vitro and in vivo. Nat. Commun. 11, 6069 (2020).
pubmed: 33247103
pmcid: 7699637
doi: 10.1038/s41467-020-19892-6
Lee, R. G. et al. Cardiolipin is required for membrane docking of mitochondrial ribosomes and protein synthesis. J. Cell Sci. 133, jcs240374 (2020).
pubmed: 32576663
doi: 10.1242/jcs.240374
Rackham, O. et al. Pentatricopeptide repeat domain protein 1 lowers the levels of mitochondrial leucine tRNAs in cells. Nucleic Acids Res. 37, 5859–5867 (2009).
pubmed: 19651879
pmcid: 2761286
doi: 10.1093/nar/gkp627
Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016).
pubmed: 27412086
doi: 10.1093/bioinformatics/btw413
Lehmann, G. & Legland, D. Efficient N-dimensional surface estimation using Crofton formula and run-length encoding. Insight J. https://doi.org/10.54294/wdu86d (2012).
doi: 10.54294/wdu86d
Community, B. O. Blender—a 3D Modelling and Rendering Package (Blender Foundation, 2018).
Krueger, F., James, F., Ewels, P., Afyounian, E. & Schuster-Boeckler, B. FelixKrueger/TrimGalore: v0.6.7—DOI via Zenodo (2021); https://doi.org/10.5281/zenodo.5127899
Andrews, S. FASTQC. A Quality Control Tool for High Throughput Sequence Data (2010).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959
pmcid: 5600148
doi: 10.1038/nmeth.4197
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2015).
pubmed: 26925227
doi: 10.12688/f1000research.7563.1
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Zhu, A., Ibrahim, J. G. & Love, M. I. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35, 2084–2092 (2019).
pubmed: 30395178
doi: 10.1093/bioinformatics/bty895
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).
pubmed: 19033363
doi: 10.1093/nar/gkn923
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
pubmed: 19131956
doi: 10.1038/nprot.2008.211
R: A Language and Environment for Statistical Computing (R Core Team, 2013).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Vries, A. D. & Ripley, B. Create Dendrograms and Tree Diagrams Using ‘ggplot2’. R package ggdendro version 0.1.22 (2020).
Bruderer, R. et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell Proteom. 14, 1400–1410 (2015).
doi: 10.1074/mcp.M114.044305
Kuznetsova, I., Lugmayr, A., Rackham, O. & Filipovska, A. OmicsVolcano: software for intuitive visualization and interactive exploration of high-throughput biological data. STAR Protoc. 2, 100279 (2021).
pubmed: 33532728
pmcid: 7821039
doi: 10.1016/j.xpro.2020.100279
Lydic, T. A., Busik, J. V. & Reid, G. E. A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids. J. Lipid Res. 55, 1797–1809 (2014).
pubmed: 24879804
pmcid: 4109773
doi: 10.1194/jlr.D050302
Hofferek, V., Su, H. & Reid, G. E. in Mass Spectrometry-Based Lipidomics: Methods and Protocols (ed. Hsu, F. -F.) 61–75 (Springer US, 2021); https://doi.org/10.1007/978-1-0716-1410-5_5
Fahy, E. et al. A comprehensive classification system for lipids. J. Lipid Res. 46, 839–862 (2005).
pubmed: 15722563
doi: 10.1194/jlr.E400004-JLR200
Fahy, E. et al. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50, S9–S14 (2009).
pubmed: 19098281
pmcid: 2674711
doi: 10.1194/jlr.R800095-JLR200
Rustam, Y. H. & Reid, G. E. Analytical challenges and recent advances in mass spectrometry based lipidomics. Anal. Chem. 90, 374–397 (2018).
pubmed: 29166560
doi: 10.1021/acs.analchem.7b04836
Jensen, P. H., Karlsson, N. G., Kolarich, D. & Packer, N. H. Structural analysis of N- and O-glycans released from glycoproteins. Nat. Protoc. 7, 1299–1310 (2012).
pubmed: 22678433
doi: 10.1038/nprot.2012.063
Moh, E. S. X. et al. Long-term intrathecal administration of morphine vs. baclofen: differences in CSF glycoconjugate profiles using multiglycomics. Glycobiology 32, 50–59 (2022).
pubmed: 34969075
doi: 10.1093/glycob/cwab098
Packer, N. H., Lawson, M. A., Jardine, D. R. & Redmond, J. W. A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj. J. 15, 737–747 (1998).
pubmed: 9870349
doi: 10.1023/A:1006983125913
Ashwood, C., Lin, C. -H., Thaysen-Andersen, M. & Packer, N. H. Discrimination of isomers of released N- and O-glycans using diagnostic product ions in negative ion PGC-LC-ESI-MS/MS. J. Am. Soc. Mass. Spectrom. 29, 1194–1209 (2018).
pubmed: 29603058
doi: 10.1007/s13361-018-1932-z
Sanchez, M. I. G. L. et al. RNA processing in human mitochondria. Cell Cycle 10, 2904–2916 (2011).
pubmed: 21857155
doi: 10.4161/cc.10.17.17060
Watanabe, Y., Aoki-Kinoshita, K. F., Ishihama, Y. & Okuda, S. GlycoPOST realizes FAIR principles for glycomics mass spectrometry data. Nucleic Acids Res. 49, D1523–D1528 (2021).
pubmed: 33174597
doi: 10.1093/nar/gkaa1012
Iudin, A. et al. EMPIAR: the Electron Microscopy Public Image Archive. Nucleic Acids Res. 51, D1503–D1511 (2023).
pubmed: 36440762
doi: 10.1093/nar/gkac1062