Evaluation of Clinical and Immunological Alterations Associated with ICF Syndrome.
Centromeric instability
Combined immunodeficiency
ICF
Inborn errors of immunity
T-cell subpopulations
Journal
Journal of clinical immunology
ISSN: 1573-2592
Titre abrégé: J Clin Immunol
Pays: Netherlands
ID NLM: 8102137
Informations de publication
Date de publication:
22 Dec 2023
22 Dec 2023
Historique:
received:
22
08
2023
accepted:
20
11
2023
medline:
22
12
2023
pubmed:
22
12
2023
entrez:
22
12
2023
Statut:
epublish
Résumé
Immunodeficiency with centromeric instability and facial anomalies (ICF) syndrome is a rare autosomal recessive combined immunodeficiency. The detailed immune responses are not explored widely. We investigated known and novel immune alterations in lymphocyte subpopulations and their association with clinical symptoms in a well-defined ICF cohort. We recruited the clinical findings from twelve ICF1 and ICF2 patients. We performed detailed immunological evaluation, including lymphocyte subset analyses, upregulation, and proliferation of T cells. We also determined the frequency of circulating T follicular helper (cT There were ten ICF1 and two ICF2 patients. We identified two novel homozygous missense mutations in the ZBTB24 gene. Respiratory tract infections were the most common recurrent infections among the patients. Gastrointestinal system (GIS) involvements were observed in seven patients. All patients received intravenous immunoglobulin replacement therapy and antibacterial prophylaxis; two died during the follow-up period. Immunologically, CD4 The ICF syndrome encompasses various manifestations affecting multiple end organs. Perturbed T-cell responses with increased cT
Identifiants
pubmed: 38129713
doi: 10.1007/s10875-023-01620-6
pii: 10.1007/s10875-023-01620-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26Subventions
Organisme : Ulusal Metroloji Enstitüsü, Türkiye Bilimsel ve Teknolojik Araştirma Kurumu
ID : 318S202
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Maraschio P, Zuffardi O, DallaFior T, Tiepolo L. Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J Med Genet. 1988;25(3):173–80.
pubmed: 3351904
pmcid: 1015482
doi: 10.1136/jmg.25.3.173
Turleau C, Cabanis MO, Girault D, Ledeist F, Mettey R, Puissant H, et al. Multibranched chromosomes in the ICF syndrome: immunodeficiency, centromeric instability, and facial anomalies. Am J Med Genet. 1989;32(3):420–4.
pubmed: 2729362
doi: 10.1002/ajmg.1320320331
Weemaes CM, Van Tol MJ, Wang J, van Ostaijen-Ten Dam MM, Van Eggermond MC, Thijssen PE, et al. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur J Hum Genet. 2013;21(11):1219–25.
pubmed: 23486536
pmcid: 3798845
doi: 10.1038/ejhg.2013.40
Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. Human inborn errors of immunity: 2022 update on the classification from the international union of immunological societies expert committee. J Clin Immunol. 2022;42(7):1473–507.
pubmed: 35748970
pmcid: 9244088
doi: 10.1007/s10875-022-01289-3
Wijesinghe P, Bhagwat AS. Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res. 2012;40(18):9206–17.
pubmed: 22798497
pmcid: 3467078
doi: 10.1093/nar/gks685
StremenovaSpegarova J, Lawless D, Mohamad SMB, Engelhardt KR, Doody G, Shrimpton J, et al. Germline TET2 loss of function causes childhood immunodeficiency and lymphoma. Blood, J Am Soc Hematol. 2020;136(9):1055–66.
Campos-Sanchez E, Martínez-Cano J, del Pino ML, López-Granados E, Cobaleda C. Epigenetic deregulation in human primary immunodeficiencies. Trends Immunol. 2019;40(1):49–65.
pubmed: 30509895
doi: 10.1016/j.it.2018.11.005
Kondo T, Bobek MP, Kuick R, Lamb B, Zhu X, Narayan A, et al. Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum Mol Genet. 2000;9(4):597–604.
pubmed: 10699183
doi: 10.1093/hmg/9.4.597
Miniou P, Bourc’his D, Gomes DM, Jeanpierre M, Viegas-Péquignot E. Undermethylation of Alu sequences in ICF syndrome: molecular and in situ analysis. Cytogenet Genome Res. 1997;77(3–4):308–13.
doi: 10.1159/000134605
Miniou P, Jeanpierre M, Bourc’his D, Barbosa ACC, Blanquet V, Viegas-Péquignot E. α-Satellite DNA methylation in normal individuals and in ICF patients: heterogeneous methylation of constitutive heterochromatin in adult and fetal tissues. Human Genet. 1997;99:738–45.
doi: 10.1007/s004390050441
Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci. 1999;96(25):14412–7.
pubmed: 10588719
pmcid: 24450
doi: 10.1073/pnas.96.25.14412
De Greef JC, Wang J, Balog J, Den Dunnen JT, Frants RR, Straasheijm KR, et al. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Human Genet. 2011;88(6):796–804.
doi: 10.1016/j.ajhg.2011.04.018
Jin B, Tao Q, Peng J, Soo HM, Wu W, Ying J, et al. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet. 2008;17(5):690–709.
pubmed: 18029387
doi: 10.1093/hmg/ddm341
Yoon HS, Scharer CD, Majumder P, Davis CW, Butler R, Zinzow-Kramer W, et al. ZBTB32 is an early repressor of the CIITA and MHC class II gene expression during B cell differentiation to plasma cells. J Immunol. 2012;189(5):2393–403.
pubmed: 22851713
doi: 10.4049/jimmunol.1103371
Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science. 1997;276(5312):589–92.
pubmed: 9110977
doi: 10.1126/science.276.5312.589
Nitta H, Unoki M, Ichiyanagi K, Kosho T, Shigemura T, Takahashi H, et al. Three novel ZBTB24 mutations identified in Japanese and Cape Verdean type 2 ICF syndrome patients. J Hum Genet. 2013;58(7):455–60.
pubmed: 23739126
doi: 10.1038/jhg.2013.56
Ren R, Hardikar S, Horton JR, Lu Y, Zeng Y, Singh AK, et al. Structural basis of specific DNA binding by the transcription factor ZBTB24. Nucleic Acids Res. 2019;47(16):8388–98.
pubmed: 31226215
pmcid: 6895263
doi: 10.1093/nar/gkz557
Thijssen PE, Ito Y, Grillo G, Wang J, Velasco G, Nitta H, et al. Mutations in CDCA7 and HELLS cause immunodeficiency–centromeric instability–facial anomalies syndrome. Nat Commun. 2015;6(1):7870.
pubmed: 26216346
doi: 10.1038/ncomms8870
Kiaee F, Zaki-Dizaji M, Hafezi N, Almasi-Hashiani A, Hamedifar H, Sabzevari A, et al. Clinical, immunologic and molecular spectrum of patients with immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome: a systematic review. Endocr, Metab Immune Disorders-Drug Targets Formerly Curr Drug Targets-Immune, Endocr Metab Dis. 2021;21(4):664–72.
doi: 10.2174/1871530320666200613204426
Hagleitner M, Lankester A, Maraschio P, Hulten M, Fryns J-P, Schuetz C, et al. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet. 2008;45(2):93–9.
pubmed: 17893117
doi: 10.1136/jmg.2007.053397
Blanco-Betancourt CE, Moncla A, Milili M, Jiang YL, Viegas-Péquignot EM, Roquelaure B, et al. Defective B-cell-negative selection and terminal differentiation in the ICF syndrome. Blood. 2004;103(7):2683–90.
pubmed: 14645008
doi: 10.1182/blood-2003-08-2632
Ehrlich M, Buchanan KL, Tsien F, Jiang G, Sun B, Uicker W, et al. DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum Mol Genet. 2001;10(25):2917–31.
pubmed: 11741835
doi: 10.1093/hmg/10.25.2917
Sterlin D, Velasco G, Moshous D, Touzot F, Mahlaoui N, Fischer A, et al. Genetic, cellular and clinical features of ICF syndrome: a French national survey. J Clin Immunol. 2016;36:149–59.
pubmed: 26851945
doi: 10.1007/s10875-016-0240-2
Ueda Y, Okano M, Williams C, Chen T, Georgopoulos K, Li E. Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development. 2006;133(6):1183–92.
pubmed: 16501171
doi: 10.1242/dev.02293
Rechavi E, Lev A, Eyal E, Barel O, Kol N, Barhom SF, et al. A novel mutation in a critical region for the methyl donor binding in DNMT3B causes immunodeficiency, centromeric instability, and facial anomalies syndrome (ICF). J Clin Immunol. 2016;36:801–9.
pubmed: 27734333
doi: 10.1007/s10875-016-0340-z
Smeets DF, Moog U, Weemaes CM, Vaes-Peeters G, Merkx GF, Niehof JP, et al. ICF syndrome: a new case and review of the literature. Hum Genet. 1994;94:240–6.
pubmed: 8076938
doi: 10.1007/BF00208277
Conrad MA, Dawany N, Sullivan KE, Devoto M, Kelsen JR. Novel ZBTB24 mutation associated with immunodeficiency, centromere instability, and facial anomalies type-2 syndrome identified in a patient with very early onset inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(12):2252–5.
pubmed: 29023266
doi: 10.1097/MIB.0000000000001280
von Bernuth H, Ravindran E, Du H, Fröhler S, Strehl K, Krämer N, et al. Combined immunodeficiency develops with age in immunodeficiency-centromeric instability-facial anomalies syndrome 2 (ICF2). Orphanet J Rare Dis. 2014;9(1):1–6.
Thomas RM, Gamper CJ, Ladle BH, Powell JD, Wells AD. De novo DNA methylation is required to restrict T helper lineage plasticity. J Biol Chem. 2012;287(27):22900–9.
pubmed: 22584578
pmcid: 3391093
doi: 10.1074/jbc.M111.312785
Gamper CJ, Agoston AT, Nelson WG, Powell JD. Identification of DNA methyltransferase 3a as a T cell receptor-induced regulator of Th1 and Th2 differentiation. J Immunol. 2009;183(4):2267–76.
pubmed: 19625655
doi: 10.4049/jimmunol.0802960
Wang L, Liu Y, Beier UH, Han R, Bhatti TR, Akimova T, et al. Foxp3+ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity. Blood, J Am Soc Hematol. 2013;121(18):3631–9.
Hale JS, Youngblood B, Latner DR, Mohammed AUR, Ye L, Akondy RS, et al. Distinct memory CD4+ T cells with commitment to T follicular helper-and T helper 1-cell lineages are generated after acute viral infection. Immunity. 2013;38(4):805–17.
pubmed: 23583644
pmcid: 3741679
doi: 10.1016/j.immuni.2013.02.020
Piotrowska M, Gliwiński M, Trzonkowski P, Iwaszkiewicz-Grzes D. Regulatory T cells-related genes are under DNA methylation influence. Int J Mol Sci. 2021;22(13):7144.
pubmed: 34281195
pmcid: 8267835
doi: 10.3390/ijms22137144
Correa LO, Jordan MS, Carty SA. DNA methylation in T-cell development and differentiation. Crit Rev Immunol. 2020;40(2):135–56.
pubmed: 32749092
pmcid: 8048391
doi: 10.1615/CritRevImmunol.2020033728
Helfricht A, Thijssen PE, Rother MB, Shah RG, Du L, Takada S, et al. Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome. J Exp Med. 2020;217(11):e20191688.
pubmed: 32865561
pmcid: 7526497
doi: 10.1084/jem.20191688
Kiykim A, Ogulur I, Dursun E, Charbonnier LM, Nain E, Cekic S, et al. Abatacept as a long-term targeted therapy for LRBA deficiency. J Allergy Clin Immunol: In Practice. 2019;7(8):2790-800.e15.
Kolukisa B, Baser D, Akcam B, Danielson J, BilgicEltan S, Haliloglu Y, et al. Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy. 2022;77(3):1004–19.
pubmed: 34287962
doi: 10.1111/all.15010
Baris S, Benamar M, Chen Q, Catak MC, Martínez-Blanco M, Wang M, et al. Severe allergic dysregulation due to a gain of function mutation in the transcription factor STAT6. J Allergy Clin Immunol. 2023;152(1):182-194.e7.
pubmed: 36758835
doi: 10.1016/j.jaci.2023.01.023
Catak MC, Akcam B, BilgicEltan S, Babayeva R, Karakus IS, Akgun G, et al. Comparing the levels of CTLA-4-dependent biological defects in patients with LRBA deficiency and CTLA-4 insufficiency. Allergy. 2022;77(10):3108–23.
pubmed: 35491430
doi: 10.1111/all.15331
Besci O, Baser D, Ogulur I, Berberoglu AC, Kiykim A, Besci T, et al. Reference values for T and B lymphocyte subpopulations in Turkish children and adults. Turk J Med Sci. 2021;51(4):1814–24.
pubmed: 33754649
pmcid: 8569764
doi: 10.3906/sag-2010-176
Sefer AP, Abolhassani H, Ober F, Kayaoglu B, BilgicEltan S, Kara A, et al. Expanding the clinical and immunological phenotypes and natural history of MALT1 deficiency. J Clin Immunol. 2022;42(3):634–52.
pubmed: 35079916
doi: 10.1007/s10875-021-01191-4
Kayaoglu B, Kasap N, Yilmaz NS, Charbonnier LM, Geckin B, Akcay A, et al. Stepwise reversal of immune dysregulation due to STAT1 gain-of-function mutation following ruxolitinib bridge therapy and transplantation. J Clin Immunol. 2021;41:769–79.
pubmed: 33475942
doi: 10.1007/s10875-020-00943-y
Mirdita M, Schutze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679–82.
pubmed: 35637307
pmcid: 9184281
doi: 10.1038/s41592-022-01488-1
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1):70–82.
pubmed: 32881101
doi: 10.1002/pro.3943
Van den Boogaard M, Thijssen P, Aytekin C, Licciardi F, Kıykım A, Spossito L, et al. Expanding the mutation spectrum in ICF syndrome: evidence for a gender bias in ICF2. Clin Genet. 2017;92(4):380–7.
pubmed: 28128455
doi: 10.1111/cge.12979
Kutluğ S, Ogur G, Yilmaz A, Thijssen PE, Abur U, Yildiran A. Vesicourethral reflux-induced renal failure in a patient with ICF syndrome due to a novel DNMT3B mutation. Am J Med Genet A. 2016;170(12):3253–7.
pubmed: 27604394
doi: 10.1002/ajmg.a.37866
Björck EJ, Bui TH, Wijmenga C, Grandell U, Nordenskjöld M. Early prenatal diagnosis of the ICF syndrome. Prenat Diagn. 2000;20(10):828–31.
pubmed: 11038463
doi: 10.1002/1097-0223(200010)20:10<828::AID-PD907>3.0.CO;2-B
Gao L, Emperle M, Guo Y, Grimm SA, Ren W, Adam S, et al. Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nat Commun. 2020;11(1):3355.
pubmed: 32620778
pmcid: 7335073
doi: 10.1038/s41467-020-17109-4
Lin CC, Chen YP, Yang WZ, Shen JCK, Yuan HS. Structural insights into CpG-specific DNA methylation by human DNA methyltransferase 3B. Nucleic Acids Res. 2020;48(7):3949–61.
pubmed: 32083663
pmcid: 7144912
doi: 10.1093/nar/gkaa111
Gao L, Guo Y, Biswal M, Lu J, Yin J, Fang J, et al. Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations. Nat Commun. 2022;13(1):4249.
pubmed: 35869095
pmcid: 9307851
doi: 10.1038/s41467-022-31933-w
Barakat S, Ezen E, Devecioglu I, Gezen M, Piepoli S, Erman B. Dimerization choice and alternative functions of ZBTB transcription factors. FEBS J. 2023. https://doi.org/10.1111/febs.16905 .
doi: 10.1111/febs.16905
pubmed: 37450366
Ren R, Hardikar S, Horton JR, Lu Y, Zeng Y, Singh AK, et al. Structural basis of specific DNA binding by the transcription factor ZBTB24. Nucleic Acids Res. 2019;47(16):8388–98.
pubmed: 31226215
pmcid: 6895263
doi: 10.1093/nar/gkz557
Lal G, Zhang N, Van Der Touw W, Ding Y, Ju W, Bottinger EP, et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol. 2009;182(1):259–73.
pubmed: 19109157
doi: 10.4049/jimmunol.182.1.259
Wijmenga C, Hansen RS, Gimelli G, Björck EJ, Davies EG, Valentine D, et al. Genetic variation in ICF syndrome: evidence for genetic heterogeneity. Hum Mutat. 2000;16(6):509–17.
pubmed: 11102980
doi: 10.1002/1098-1004(200012)16:6<509::AID-HUMU8>3.0.CO;2-V
Gowher H, Jeltsch A. Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem. 2002;277(23):20409–14.
pubmed: 11919202
doi: 10.1074/jbc.M202148200
Moarefi AH, Chédin F. ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation. J Mol Biol. 2011;409(5):758–72.
pubmed: 21549127
doi: 10.1016/j.jmb.2011.04.050
Nielsen JV, Thomassen M, Møllgård K, Noraberg J, Jensen NA. Zbtb20 defines a hippocampal neuronal identity through direct repression of genes that control projection neuron development in the isocortex. Cereb Cortex. 2014;24(5):1216–29.
pubmed: 23283686
doi: 10.1093/cercor/bhs400
Mitchelmore C, Kjærulff KM, Pedersen HC, Nielsen JV, Rasmussen TE, Fisker MF, et al. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms: association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia. J Biol Chem. 2002;277(9):7598–609.
pubmed: 11744704
doi: 10.1074/jbc.M110023200
Kamae C, Imai K, Kato T, Okano T, Honma K, Nakagawa N, et al. Clinical and immunological characterization of ICF syndrome in Japan. J Clin Immunol. 2018;38:927–37.
pubmed: 30353301
doi: 10.1007/s10875-018-0559-y
Harnisch E, Buddingh EP, Thijssen PE, Brooks AS, Driessen GJ, Kersseboom R, et al. Hematopoietic stem cell transplantation in a patient with ICF2 syndrome presenting with EBV-induced hemophagocytic lymphohystiocytosis. Transplantation. 2016;100(7):e35–6.
pubmed: 27326813
doi: 10.1097/TP.0000000000001210
Gennery AR, Slatter MA, Bredius RG, Hagleitner MM, Weemaes C, Cant AJ, et al. Hematopoietic stem cell transplantation corrects the immunologic abnormalities associated with immunodeficiency-centromeric instability-facial dysmorphism syndrome. Pediatrics. 2007;120(5):e1341–4.
pubmed: 17908720
doi: 10.1542/peds.2007-0640
Kraft MT, Mehyar LS, Prince BT, Reshmi SC, Abraham RS, Abu-Arja R. Immune reconstitution after hematopoietic stem cell transplantation in immunodeficiency-centromeric instability-facial anomalies syndrome type 1. J Clin Immunol. 2021;41(5):1089–94.
pubmed: 33544358
pmcid: 7862860
doi: 10.1007/s10875-021-00984-x
Burk CM, Coffey KE, Mace EM, Bostwick BL, Chinn IK, Coban-Akdemir ZH, et al. Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome with NK dysfunction and EBV-driven malignancy treated with stem cell transplantation. J Allergy Clin Immunol Pract. 2020;8(3):1103-6.e3.
pubmed: 31520839
doi: 10.1016/j.jaip.2019.08.040
Gossling KL, Schipp C, Fischer U, Babor F, Koch G, Schuster FR, et al. Hematopoietic stem cell transplantation in an infant with immunodeficiency, centromeric instability, and facial anomaly syndrome. Front Immunol. 2017;8:773.
pubmed: 28713390
pmcid: 5491950
doi: 10.3389/fimmu.2017.00773
Ehrlich M, Jackson K, Weemaes C. Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF). Orphanet J Rare Dis. 2006;1(1):1–9.
doi: 10.1186/1750-1172-1-2
Sogkas G, Dubrowinskaja N, Bergmann AK, Lentes J, Ripperger T, Fedchenko M, et al. Progressive immunodeficiency with gradual depletion of B and CD4+ T cells in immunodeficiency, centromeric instability and facial anomalies syndrome 2 (ICF2). Diseases. 2019;7(2):34.
pubmed: 30987377
pmcid: 6631482
doi: 10.3390/diseases7020034
Yehezkel S, Segev Y, Viegas-Pequignot E, Skorecki K, Selig S. Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet. 2008;17(18):2776–89.
pubmed: 18558631
doi: 10.1093/hmg/ddn177
Pezzolo A, Prigione I, Facchetti P, Castellano E, Viale M, Gimelli G, et al. T-cell apoptosis in ICF syndrome. J Allergy Clin Immunol. 2001;108(2):310–2.
pubmed: 11496256
doi: 10.1067/mai.2001.116863
Giardino G, Radwan N, Koletsi P, Morrogh DM, Adams S, Ip W, et al. Clinical and immunological features in a cohort of patients with partial DiGeorge syndrome followed at a single center. Blood, J Am Soc Hematol. 2019;133(24):2586–96.
Ogulur I, Kiykim A, Baser D, Karakoc-Aydiner E, Ozen A, Baris S. Lymphocyte subset abnormalities in pediatric-onset common variable immunodeficiency. Int Arch Allergy Immunol. 2020;181(3):228–37.
pubmed: 31901904
doi: 10.1159/000504598
Alroqi FJ, Charbonnier L-M, Baris S, Kiykim A, Chou J, Platt CD, et al. Exaggerated follicular helper T-cell responses in patients with LRBA deficiency caused by failure of CTLA4-mediated regulation. J Allergy Clin Immunol. 2018;141(3):1050-9.e10.
pubmed: 28601686
doi: 10.1016/j.jaci.2017.05.022
Ma CS, Wong N, Rao G, Avery DT, Torpy J, Hambridge T, et al. Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. J Allergy Clin Immunol. 2015;136(4):993-1006.e1.
pubmed: 26162572
pmcid: 5042203
doi: 10.1016/j.jaci.2015.05.036
Guo L, Hu-Li J, Zhu J, Watson CJ, Difilippantonio MJ, Pannetier C, et al. In TH2 cells the Il4 gene has a series of accessibility states associated with distinctive probabilities of IL-4 production. Proc Natl Acad Sci. 2002;99(16):10623–8.
pubmed: 12149469
pmcid: 124993
doi: 10.1073/pnas.162360199
Tangye SG, Liu Y-J, Aversa G, Phillips JH, de Vries JE. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med. 1998;188(9):1691–703.
pubmed: 9802981
pmcid: 2212517
doi: 10.1084/jem.188.9.1691
Klein U, Rajewsky K, Küppers R. Human immunoglobulin (Ig) M+ IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med. 1998;188(9):1679–89.
pubmed: 9802980
pmcid: 2212515
doi: 10.1084/jem.188.9.1679
Ehrlich M, Sanchez C, Shao C, Nishiyama R, Kehrl J, Kuick R, et al. ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity. 2008;41(4):253–71.
pubmed: 18432406
pmcid: 2430169
doi: 10.1080/08916930802024202
Staudacher O, Klein J, Thee S, Ullrich J, Wahn V, Unterwalder N, et al. TREC newborn screening fails to detect immunodeficiency, centromeric instability, and facial anomalies syndrome. J Allergy Clin Immunol Pract. 2023;11(9):2872–83.
pubmed: 37302792
doi: 10.1016/j.jaip.2023.06.006