Evaluation of Clinical and Immunological Alterations Associated with ICF Syndrome.

Centromeric instability Combined immunodeficiency ICF Inborn errors of immunity T-cell subpopulations

Journal

Journal of clinical immunology
ISSN: 1573-2592
Titre abrégé: J Clin Immunol
Pays: Netherlands
ID NLM: 8102137

Informations de publication

Date de publication:
22 Dec 2023
Historique:
received: 22 08 2023
accepted: 20 11 2023
medline: 22 12 2023
pubmed: 22 12 2023
entrez: 22 12 2023
Statut: epublish

Résumé

Immunodeficiency with centromeric instability and facial anomalies (ICF) syndrome is a rare autosomal recessive combined immunodeficiency. The detailed immune responses are not explored widely. We investigated known and novel immune alterations in lymphocyte subpopulations and their association with clinical symptoms in a well-defined ICF cohort. We recruited the clinical findings from twelve ICF1 and ICF2 patients. We performed detailed immunological evaluation, including lymphocyte subset analyses, upregulation, and proliferation of T cells. We also determined the frequency of circulating T follicular helper (cT There were ten ICF1 and two ICF2 patients. We identified two novel homozygous missense mutations in the ZBTB24 gene. Respiratory tract infections were the most common recurrent infections among the patients. Gastrointestinal system (GIS) involvements were observed in seven patients. All patients received intravenous immunoglobulin replacement therapy and antibacterial prophylaxis; two died during the follow-up period. Immunologically, CD4 The ICF syndrome encompasses various manifestations affecting multiple end organs. Perturbed T-cell responses with increased cT

Identifiants

pubmed: 38129713
doi: 10.1007/s10875-023-01620-6
pii: 10.1007/s10875-023-01620-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26

Subventions

Organisme : Ulusal Metroloji Enstitüsü, Türkiye Bilimsel ve Teknolojik Araştirma Kurumu
ID : 318S202

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Maraschio P, Zuffardi O, DallaFior T, Tiepolo L. Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J Med Genet. 1988;25(3):173–80.
pubmed: 3351904 pmcid: 1015482 doi: 10.1136/jmg.25.3.173
Turleau C, Cabanis MO, Girault D, Ledeist F, Mettey R, Puissant H, et al. Multibranched chromosomes in the ICF syndrome: immunodeficiency, centromeric instability, and facial anomalies. Am J Med Genet. 1989;32(3):420–4.
pubmed: 2729362 doi: 10.1002/ajmg.1320320331
Weemaes CM, Van Tol MJ, Wang J, van Ostaijen-Ten Dam MM, Van Eggermond MC, Thijssen PE, et al. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur J Hum Genet. 2013;21(11):1219–25.
pubmed: 23486536 pmcid: 3798845 doi: 10.1038/ejhg.2013.40
Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. Human inborn errors of immunity: 2022 update on the classification from the international union of immunological societies expert committee. J Clin Immunol. 2022;42(7):1473–507.
pubmed: 35748970 pmcid: 9244088 doi: 10.1007/s10875-022-01289-3
Wijesinghe P, Bhagwat AS. Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res. 2012;40(18):9206–17.
pubmed: 22798497 pmcid: 3467078 doi: 10.1093/nar/gks685
StremenovaSpegarova J, Lawless D, Mohamad SMB, Engelhardt KR, Doody G, Shrimpton J, et al. Germline TET2 loss of function causes childhood immunodeficiency and lymphoma. Blood, J Am Soc Hematol. 2020;136(9):1055–66.
Campos-Sanchez E, Martínez-Cano J, del Pino ML, López-Granados E, Cobaleda C. Epigenetic deregulation in human primary immunodeficiencies. Trends Immunol. 2019;40(1):49–65.
pubmed: 30509895 doi: 10.1016/j.it.2018.11.005
Kondo T, Bobek MP, Kuick R, Lamb B, Zhu X, Narayan A, et al. Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum Mol Genet. 2000;9(4):597–604.
pubmed: 10699183 doi: 10.1093/hmg/9.4.597
Miniou P, Bourc’his D, Gomes DM, Jeanpierre M, Viegas-Péquignot E. Undermethylation of Alu sequences in ICF syndrome: molecular and in situ analysis. Cytogenet Genome Res. 1997;77(3–4):308–13.
doi: 10.1159/000134605
Miniou P, Jeanpierre M, Bourc’his D, Barbosa ACC, Blanquet V, Viegas-Péquignot E. α-Satellite DNA methylation in normal individuals and in ICF patients: heterogeneous methylation of constitutive heterochromatin in adult and fetal tissues. Human Genet. 1997;99:738–45.
doi: 10.1007/s004390050441
Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci. 1999;96(25):14412–7.
pubmed: 10588719 pmcid: 24450 doi: 10.1073/pnas.96.25.14412
De Greef JC, Wang J, Balog J, Den Dunnen JT, Frants RR, Straasheijm KR, et al. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Human Genet. 2011;88(6):796–804.
doi: 10.1016/j.ajhg.2011.04.018
Jin B, Tao Q, Peng J, Soo HM, Wu W, Ying J, et al. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet. 2008;17(5):690–709.
pubmed: 18029387 doi: 10.1093/hmg/ddm341
Yoon HS, Scharer CD, Majumder P, Davis CW, Butler R, Zinzow-Kramer W, et al. ZBTB32 is an early repressor of the CIITA and MHC class II gene expression during B cell differentiation to plasma cells. J Immunol. 2012;189(5):2393–403.
pubmed: 22851713 doi: 10.4049/jimmunol.1103371
Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science. 1997;276(5312):589–92.
pubmed: 9110977 doi: 10.1126/science.276.5312.589
Nitta H, Unoki M, Ichiyanagi K, Kosho T, Shigemura T, Takahashi H, et al. Three novel ZBTB24 mutations identified in Japanese and Cape Verdean type 2 ICF syndrome patients. J Hum Genet. 2013;58(7):455–60.
pubmed: 23739126 doi: 10.1038/jhg.2013.56
Ren R, Hardikar S, Horton JR, Lu Y, Zeng Y, Singh AK, et al. Structural basis of specific DNA binding by the transcription factor ZBTB24. Nucleic Acids Res. 2019;47(16):8388–98.
pubmed: 31226215 pmcid: 6895263 doi: 10.1093/nar/gkz557
Thijssen PE, Ito Y, Grillo G, Wang J, Velasco G, Nitta H, et al. Mutations in CDCA7 and HELLS cause immunodeficiency–centromeric instability–facial anomalies syndrome. Nat Commun. 2015;6(1):7870.
pubmed: 26216346 doi: 10.1038/ncomms8870
Kiaee F, Zaki-Dizaji M, Hafezi N, Almasi-Hashiani A, Hamedifar H, Sabzevari A, et al. Clinical, immunologic and molecular spectrum of patients with immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome: a systematic review. Endocr, Metab Immune Disorders-Drug Targets Formerly Curr Drug Targets-Immune, Endocr Metab Dis. 2021;21(4):664–72.
doi: 10.2174/1871530320666200613204426
Hagleitner M, Lankester A, Maraschio P, Hulten M, Fryns J-P, Schuetz C, et al. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet. 2008;45(2):93–9.
pubmed: 17893117 doi: 10.1136/jmg.2007.053397
Blanco-Betancourt CE, Moncla A, Milili M, Jiang YL, Viegas-Péquignot EM, Roquelaure B, et al. Defective B-cell-negative selection and terminal differentiation in the ICF syndrome. Blood. 2004;103(7):2683–90.
pubmed: 14645008 doi: 10.1182/blood-2003-08-2632
Ehrlich M, Buchanan KL, Tsien F, Jiang G, Sun B, Uicker W, et al. DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum Mol Genet. 2001;10(25):2917–31.
pubmed: 11741835 doi: 10.1093/hmg/10.25.2917
Sterlin D, Velasco G, Moshous D, Touzot F, Mahlaoui N, Fischer A, et al. Genetic, cellular and clinical features of ICF syndrome: a French national survey. J Clin Immunol. 2016;36:149–59.
pubmed: 26851945 doi: 10.1007/s10875-016-0240-2
Ueda Y, Okano M, Williams C, Chen T, Georgopoulos K, Li E. Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development. 2006;133(6):1183–92.
pubmed: 16501171 doi: 10.1242/dev.02293
Rechavi E, Lev A, Eyal E, Barel O, Kol N, Barhom SF, et al. A novel mutation in a critical region for the methyl donor binding in DNMT3B causes immunodeficiency, centromeric instability, and facial anomalies syndrome (ICF). J Clin Immunol. 2016;36:801–9.
pubmed: 27734333 doi: 10.1007/s10875-016-0340-z
Smeets DF, Moog U, Weemaes CM, Vaes-Peeters G, Merkx GF, Niehof JP, et al. ICF syndrome: a new case and review of the literature. Hum Genet. 1994;94:240–6.
pubmed: 8076938 doi: 10.1007/BF00208277
Conrad MA, Dawany N, Sullivan KE, Devoto M, Kelsen JR. Novel ZBTB24 mutation associated with immunodeficiency, centromere instability, and facial anomalies type-2 syndrome identified in a patient with very early onset inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(12):2252–5.
pubmed: 29023266 doi: 10.1097/MIB.0000000000001280
von Bernuth H, Ravindran E, Du H, Fröhler S, Strehl K, Krämer N, et al. Combined immunodeficiency develops with age in immunodeficiency-centromeric instability-facial anomalies syndrome 2 (ICF2). Orphanet J Rare Dis. 2014;9(1):1–6.
Thomas RM, Gamper CJ, Ladle BH, Powell JD, Wells AD. De novo DNA methylation is required to restrict T helper lineage plasticity. J Biol Chem. 2012;287(27):22900–9.
pubmed: 22584578 pmcid: 3391093 doi: 10.1074/jbc.M111.312785
Gamper CJ, Agoston AT, Nelson WG, Powell JD. Identification of DNA methyltransferase 3a as a T cell receptor-induced regulator of Th1 and Th2 differentiation. J Immunol. 2009;183(4):2267–76.
pubmed: 19625655 doi: 10.4049/jimmunol.0802960
Wang L, Liu Y, Beier UH, Han R, Bhatti TR, Akimova T, et al. Foxp3+ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity. Blood, J Am Soc Hematol. 2013;121(18):3631–9.
Hale JS, Youngblood B, Latner DR, Mohammed AUR, Ye L, Akondy RS, et al. Distinct memory CD4+ T cells with commitment to T follicular helper-and T helper 1-cell lineages are generated after acute viral infection. Immunity. 2013;38(4):805–17.
pubmed: 23583644 pmcid: 3741679 doi: 10.1016/j.immuni.2013.02.020
Piotrowska M, Gliwiński M, Trzonkowski P, Iwaszkiewicz-Grzes D. Regulatory T cells-related genes are under DNA methylation influence. Int J Mol Sci. 2021;22(13):7144.
pubmed: 34281195 pmcid: 8267835 doi: 10.3390/ijms22137144
Correa LO, Jordan MS, Carty SA. DNA methylation in T-cell development and differentiation. Crit Rev Immunol. 2020;40(2):135–56.
pubmed: 32749092 pmcid: 8048391 doi: 10.1615/CritRevImmunol.2020033728
Helfricht A, Thijssen PE, Rother MB, Shah RG, Du L, Takada S, et al. Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome. J Exp Med. 2020;217(11):e20191688.
pubmed: 32865561 pmcid: 7526497 doi: 10.1084/jem.20191688
Kiykim A, Ogulur I, Dursun E, Charbonnier LM, Nain E, Cekic S, et al. Abatacept as a long-term targeted therapy for LRBA deficiency. J Allergy Clin Immunol: In Practice. 2019;7(8):2790-800.e15.
Kolukisa B, Baser D, Akcam B, Danielson J, BilgicEltan S, Haliloglu Y, et al. Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy. 2022;77(3):1004–19.
pubmed: 34287962 doi: 10.1111/all.15010
Baris S, Benamar M, Chen Q, Catak MC, Martínez-Blanco M, Wang M, et al. Severe allergic dysregulation due to a gain of function mutation in the transcription factor STAT6. J Allergy Clin Immunol. 2023;152(1):182-194.e7.
pubmed: 36758835 doi: 10.1016/j.jaci.2023.01.023
Catak MC, Akcam B, BilgicEltan S, Babayeva R, Karakus IS, Akgun G, et al. Comparing the levels of CTLA-4-dependent biological defects in patients with LRBA deficiency and CTLA-4 insufficiency. Allergy. 2022;77(10):3108–23.
pubmed: 35491430 doi: 10.1111/all.15331
Besci O, Baser D, Ogulur I, Berberoglu AC, Kiykim A, Besci T, et al. Reference values for T and B lymphocyte subpopulations in Turkish children and adults. Turk J Med Sci. 2021;51(4):1814–24.
pubmed: 33754649 pmcid: 8569764 doi: 10.3906/sag-2010-176
Sefer AP, Abolhassani H, Ober F, Kayaoglu B, BilgicEltan S, Kara A, et al. Expanding the clinical and immunological phenotypes and natural history of MALT1 deficiency. J Clin Immunol. 2022;42(3):634–52.
pubmed: 35079916 doi: 10.1007/s10875-021-01191-4
Kayaoglu B, Kasap N, Yilmaz NS, Charbonnier LM, Geckin B, Akcay A, et al. Stepwise reversal of immune dysregulation due to STAT1 gain-of-function mutation following ruxolitinib bridge therapy and transplantation. J Clin Immunol. 2021;41:769–79.
pubmed: 33475942 doi: 10.1007/s10875-020-00943-y
Mirdita M, Schutze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679–82.
pubmed: 35637307 pmcid: 9184281 doi: 10.1038/s41592-022-01488-1
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1):70–82.
pubmed: 32881101 doi: 10.1002/pro.3943
Van den Boogaard M, Thijssen P, Aytekin C, Licciardi F, Kıykım A, Spossito L, et al. Expanding the mutation spectrum in ICF syndrome: evidence for a gender bias in ICF2. Clin Genet. 2017;92(4):380–7.
pubmed: 28128455 doi: 10.1111/cge.12979
Kutluğ S, Ogur G, Yilmaz A, Thijssen PE, Abur U, Yildiran A. Vesicourethral reflux-induced renal failure in a patient with ICF syndrome due to a novel DNMT3B mutation. Am J Med Genet A. 2016;170(12):3253–7.
pubmed: 27604394 doi: 10.1002/ajmg.a.37866
Björck EJ, Bui TH, Wijmenga C, Grandell U, Nordenskjöld M. Early prenatal diagnosis of the ICF syndrome. Prenat Diagn. 2000;20(10):828–31.
pubmed: 11038463 doi: 10.1002/1097-0223(200010)20:10<828::AID-PD907>3.0.CO;2-B
Gao L, Emperle M, Guo Y, Grimm SA, Ren W, Adam S, et al. Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nat Commun. 2020;11(1):3355.
pubmed: 32620778 pmcid: 7335073 doi: 10.1038/s41467-020-17109-4
Lin CC, Chen YP, Yang WZ, Shen JCK, Yuan HS. Structural insights into CpG-specific DNA methylation by human DNA methyltransferase 3B. Nucleic Acids Res. 2020;48(7):3949–61.
pubmed: 32083663 pmcid: 7144912 doi: 10.1093/nar/gkaa111
Gao L, Guo Y, Biswal M, Lu J, Yin J, Fang J, et al. Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations. Nat Commun. 2022;13(1):4249.
pubmed: 35869095 pmcid: 9307851 doi: 10.1038/s41467-022-31933-w
Barakat S, Ezen E, Devecioglu I, Gezen M, Piepoli S, Erman B. Dimerization choice and alternative functions of ZBTB transcription factors. FEBS J. 2023. https://doi.org/10.1111/febs.16905 .
doi: 10.1111/febs.16905 pubmed: 37450366
Ren R, Hardikar S, Horton JR, Lu Y, Zeng Y, Singh AK, et al. Structural basis of specific DNA binding by the transcription factor ZBTB24. Nucleic Acids Res. 2019;47(16):8388–98.
pubmed: 31226215 pmcid: 6895263 doi: 10.1093/nar/gkz557
Lal G, Zhang N, Van Der Touw W, Ding Y, Ju W, Bottinger EP, et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol. 2009;182(1):259–73.
pubmed: 19109157 doi: 10.4049/jimmunol.182.1.259
Wijmenga C, Hansen RS, Gimelli G, Björck EJ, Davies EG, Valentine D, et al. Genetic variation in ICF syndrome: evidence for genetic heterogeneity. Hum Mutat. 2000;16(6):509–17.
pubmed: 11102980 doi: 10.1002/1098-1004(200012)16:6<509::AID-HUMU8>3.0.CO;2-V
Gowher H, Jeltsch A. Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem. 2002;277(23):20409–14.
pubmed: 11919202 doi: 10.1074/jbc.M202148200
Moarefi AH, Chédin F. ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation. J Mol Biol. 2011;409(5):758–72.
pubmed: 21549127 doi: 10.1016/j.jmb.2011.04.050
Nielsen JV, Thomassen M, Møllgård K, Noraberg J, Jensen NA. Zbtb20 defines a hippocampal neuronal identity through direct repression of genes that control projection neuron development in the isocortex. Cereb Cortex. 2014;24(5):1216–29.
pubmed: 23283686 doi: 10.1093/cercor/bhs400
Mitchelmore C, Kjærulff KM, Pedersen HC, Nielsen JV, Rasmussen TE, Fisker MF, et al. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms: association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia. J Biol Chem. 2002;277(9):7598–609.
pubmed: 11744704 doi: 10.1074/jbc.M110023200
Kamae C, Imai K, Kato T, Okano T, Honma K, Nakagawa N, et al. Clinical and immunological characterization of ICF syndrome in Japan. J Clin Immunol. 2018;38:927–37.
pubmed: 30353301 doi: 10.1007/s10875-018-0559-y
Harnisch E, Buddingh EP, Thijssen PE, Brooks AS, Driessen GJ, Kersseboom R, et al. Hematopoietic stem cell transplantation in a patient with ICF2 syndrome presenting with EBV-induced hemophagocytic lymphohystiocytosis. Transplantation. 2016;100(7):e35–6.
pubmed: 27326813 doi: 10.1097/TP.0000000000001210
Gennery AR, Slatter MA, Bredius RG, Hagleitner MM, Weemaes C, Cant AJ, et al. Hematopoietic stem cell transplantation corrects the immunologic abnormalities associated with immunodeficiency-centromeric instability-facial dysmorphism syndrome. Pediatrics. 2007;120(5):e1341–4.
pubmed: 17908720 doi: 10.1542/peds.2007-0640
Kraft MT, Mehyar LS, Prince BT, Reshmi SC, Abraham RS, Abu-Arja R. Immune reconstitution after hematopoietic stem cell transplantation in immunodeficiency-centromeric instability-facial anomalies syndrome type 1. J Clin Immunol. 2021;41(5):1089–94.
pubmed: 33544358 pmcid: 7862860 doi: 10.1007/s10875-021-00984-x
Burk CM, Coffey KE, Mace EM, Bostwick BL, Chinn IK, Coban-Akdemir ZH, et al. Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome with NK dysfunction and EBV-driven malignancy treated with stem cell transplantation. J Allergy Clin Immunol Pract. 2020;8(3):1103-6.e3.
pubmed: 31520839 doi: 10.1016/j.jaip.2019.08.040
Gossling KL, Schipp C, Fischer U, Babor F, Koch G, Schuster FR, et al. Hematopoietic stem cell transplantation in an infant with immunodeficiency, centromeric instability, and facial anomaly syndrome. Front Immunol. 2017;8:773.
pubmed: 28713390 pmcid: 5491950 doi: 10.3389/fimmu.2017.00773
Ehrlich M, Jackson K, Weemaes C. Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF). Orphanet J Rare Dis. 2006;1(1):1–9.
doi: 10.1186/1750-1172-1-2
Sogkas G, Dubrowinskaja N, Bergmann AK, Lentes J, Ripperger T, Fedchenko M, et al. Progressive immunodeficiency with gradual depletion of B and CD4+ T cells in immunodeficiency, centromeric instability and facial anomalies syndrome 2 (ICF2). Diseases. 2019;7(2):34.
pubmed: 30987377 pmcid: 6631482 doi: 10.3390/diseases7020034
Yehezkel S, Segev Y, Viegas-Pequignot E, Skorecki K, Selig S. Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet. 2008;17(18):2776–89.
pubmed: 18558631 doi: 10.1093/hmg/ddn177
Pezzolo A, Prigione I, Facchetti P, Castellano E, Viale M, Gimelli G, et al. T-cell apoptosis in ICF syndrome. J Allergy Clin Immunol. 2001;108(2):310–2.
pubmed: 11496256 doi: 10.1067/mai.2001.116863
Giardino G, Radwan N, Koletsi P, Morrogh DM, Adams S, Ip W, et al. Clinical and immunological features in a cohort of patients with partial DiGeorge syndrome followed at a single center. Blood, J Am Soc Hematol. 2019;133(24):2586–96.
Ogulur I, Kiykim A, Baser D, Karakoc-Aydiner E, Ozen A, Baris S. Lymphocyte subset abnormalities in pediatric-onset common variable immunodeficiency. Int Arch Allergy Immunol. 2020;181(3):228–37.
pubmed: 31901904 doi: 10.1159/000504598
Alroqi FJ, Charbonnier L-M, Baris S, Kiykim A, Chou J, Platt CD, et al. Exaggerated follicular helper T-cell responses in patients with LRBA deficiency caused by failure of CTLA4-mediated regulation. J Allergy Clin Immunol. 2018;141(3):1050-9.e10.
pubmed: 28601686 doi: 10.1016/j.jaci.2017.05.022
Ma CS, Wong N, Rao G, Avery DT, Torpy J, Hambridge T, et al. Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. J Allergy Clin Immunol. 2015;136(4):993-1006.e1.
pubmed: 26162572 pmcid: 5042203 doi: 10.1016/j.jaci.2015.05.036
Guo L, Hu-Li J, Zhu J, Watson CJ, Difilippantonio MJ, Pannetier C, et al. In TH2 cells the Il4 gene has a series of accessibility states associated with distinctive probabilities of IL-4 production. Proc Natl Acad Sci. 2002;99(16):10623–8.
pubmed: 12149469 pmcid: 124993 doi: 10.1073/pnas.162360199
Tangye SG, Liu Y-J, Aversa G, Phillips JH, de Vries JE. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med. 1998;188(9):1691–703.
pubmed: 9802981 pmcid: 2212517 doi: 10.1084/jem.188.9.1691
Klein U, Rajewsky K, Küppers R. Human immunoglobulin (Ig) M+ IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med. 1998;188(9):1679–89.
pubmed: 9802980 pmcid: 2212515 doi: 10.1084/jem.188.9.1679
Ehrlich M, Sanchez C, Shao C, Nishiyama R, Kehrl J, Kuick R, et al. ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity. 2008;41(4):253–71.
pubmed: 18432406 pmcid: 2430169 doi: 10.1080/08916930802024202
Staudacher O, Klein J, Thee S, Ullrich J, Wahn V, Unterwalder N, et al. TREC newborn screening fails to detect immunodeficiency, centromeric instability, and facial anomalies syndrome. J Allergy Clin Immunol Pract. 2023;11(9):2872–83.
pubmed: 37302792 doi: 10.1016/j.jaip.2023.06.006

Auteurs

Sevgi Bilgic Eltan (S)

Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.
Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.

Ercan Nain (E)

Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.
Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.

Mehmet Cihangir Catak (MC)

Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.
Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.

Ege Ezen (E)

Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul, Turkey.

Asena Pınar Sefer (AP)

Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.
Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.

Nastaran Karimi (N)

Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Ayca Kiykim (A)

Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.
Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.

Burcu Kolukisa (B)

Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.
Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.

Dilek Baser (D)

Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.
Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.

Alper Bulutoglu (A)

Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.
Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.

Nurhan Kasap (N)

Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.
Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.

Melek Yorgun Altunbas (M)

Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.
Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.

Ezgi Yalcin Gungoren (E)

Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.
Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.

Yasemin Kendir Demirkol (Y)

Division of Pediatric Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey.

Seyhan Kutlug (S)

Division of Pediatric Immunology and Allergy, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey.

Gonca Hancioglu (G)

Division of Pediatric Immunology and Allergy, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey.

Fatih Dilek (F)

Department of Pediatrics, Faculty of Medicine, Atlas University, Istanbul, Turkey.

Alisan Yildiran (A)

Division of Pediatric Immunology and Allergy, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey.

Ahmet Ozen (A)

Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.
Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.

Elif Karakoc-Aydiner (E)

Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.
Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.

Batu Erman (B)

Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul, Turkey.

Safa Baris (S)

Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey. safabaris@hotmail.com.
Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey. safabaris@hotmail.com.
The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey. safabaris@hotmail.com.
Pediatric Allergy and Immunology, Marmara University Hospital, Istanbul, Turkey. safabaris@hotmail.com.

Classifications MeSH